Cover Image

Evidence for the Important ¬Role of Oxidative Stress in the Pathogenesis of Acne

Sina Kardeh, Seyed arman Moein, Mohammad Reza Namazi, Bahareh Kardeh

Acne vulgaris is a common inflammatory skin disorder which is recognizable by dermatological lesions and scars. In addition to some pathogenetic factors such as hyperkeratinization, upregulated sebum secretion, and immunoinflammatory reactions, recent studies have also connected oxidative stress to the pathogenesis of acne vulgaris. In this article, we will briefly review clinical studies that interrogated alterations in oxidative stress biomarkers by a systematic search conducted in PubMed, Web of Science, and Scopus using “acne”, “oxidative stress”, and “reactive oxygen species” keywords. Overall, studies have shown that oxidative biomarkers (e.g. lipid peroxidation final products) are higher in acne vulgaris lesions. A significant positive correlation has also been noted between acne severity and oxidative biomarkers. In contrast, diminished levels of antioxidant enzymes (e.g. superoxide dismutase and catalase) have been observed in acne. We propose four probable mechanisms for the role of reactive oxygen species (ROS) in acne pathogenesis. We believe that ROS can contribute significantly to the acne vulgaris pathobiology via toll-like receptor (TLR), peroxisome proliferator-activated receptor (PPAR), mTOR pathway, and innate immune system, resulting in inflammation by alterations in the generation of several proinflammatory cytokines including IL-1, IL-8, and TNF-a.[GMJ. 2019;8:e1291]

 

acne vulgaris; oxidative stress; reactive oxygen species; mTOR; PPAR; inflammation

Sarici G, Cinar S, Armutcu F, Altınyazar C, Koca R, Tekin N. Oxidative stress in acne vulgaris. J Eur Acad Dermatol Venereol. 2010;24(7):763-7.

https://doi.org/10.1111/j.1468-3083.2009.03505.x

PMid:19943837

Bergler‐Czop B. The aetiopathogenesis of acne vulgaris–what's new? Int J Cosmet Sci. 2014;36(3):187-94.

https://doi.org/10.1111/ics.12122

PMid:24575836

Zouboulis CC. Acne as a chronic systemic disease. Clin Dermatol. 2014;32(3):389-96.

https://doi.org/10.1016/j.clindermatol.2013.11.005

PMid:24767186

Bhate K, Williams H. Epidemiology of acne vulgaris. Br J Dermatol. 2013;168(3):474-85.

https://doi.org/10.1111/bjd.12149

PMid:23210645

Thiboutot D, Gollnick H, Bettoli V, Dréno B, Kang S, Leyden JJ, et al. New insights into the management of acne: an update from the Global Alliance to Improve Outcomes in Acne group. J Am Acad Dermatol. 2009;60(5):S1-S50.

https://doi.org/10.1016/j.jaad.2009.01.019

PMid:19376456

Gollnick H. Current concepts of the pathogenesis of acne. Drugs. 2003;63(15):1579-96.

https://doi.org/10.2165/00003495-200363150-00005

PMid:12887264

Allhorn M, Lundqvist K, Schmidtchen A, Åkerström B. Heme-scavenging role of α1-microglobulin in chronic ulcers. J Invest Dermatol. 2003;121(3):640-6.

https://doi.org/10.1046/j.1523-1747.2003.12409.x

PMid:12925227

Kidd P. Th1/Th2 balance: the hypothesis, its limitations, and implications for health and disease. Altern Med Rev. 2003;8(3):223-46.

PMid:12946237

Boissy RE, Manga P. On the etiology of contact/occupational vitiligo. Pigment Cell Res. 2004;17(3):208-14.

https://doi.org/10.1111/j.1600-0749.2004.00130.x

PMid:15140065

Al-Shobaili HA. Oxidants and Anti-Oxidants Status in Acne Vulgaris Patients with Varying Severity. Ann Clin Lab Sci. 2014;44(2):202-7.

PMid:24795060

Al‐Shobaili HA, Alzolibani AA, Al Robaee AA, Meki AR, Rasheed Z. Biochemical markers of oxidative and nitrosative stress in acne vulgaris: correlation with disease activity. J Clin Lab Anal. 2013;27(1):45-52.

https://doi.org/10.1002/jcla.21560

PMid:23325743

Perihan O, Ergul KB, Neslihan D, Filiz A. The activity of adenosine deaminase and oxidative stress biomarkers in scraping samples of acne lesions. J Cosmet Dermatol. 2012;11(4):323-8.

https://doi.org/10.1111/jocd.12011

PMid:23174057

Yang YS, Lim HK, Hong KK, Shin MK, Lee JW, Lee SW et al. Cigarette Smoke-Induced Interleukin-1 Alpha May Be Involved in the Pathogenesis of Adult Acne. Ann Dermatol. 2014;26(1):11-6.

https://doi.org/10.5021/ad.2014.26.1.11

PMid:24648681 PMCid:PMC3956775

Kohen R, Nyska A. Invited review: Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol. 2002;30(6):620-50.

https://doi.org/10.1080/01926230290166724

PMid:12512863

Bickers DR, Athar M. Oxidative stress in the pathogenesis of skin disease. J Invest Dermatol. 2006;126(12):2565-75.

https://doi.org/10.1038/sj.jid.5700340

PMid:17108903

Kardeh S, Ashkani-Esfahani S, Alizadeh AM. Paradoxical action of reactive oxygen species in creation and therapy of cancer. Eur J Pharmacol. 2014;735:150-68.

https://doi.org/10.1016/j.ejphar.2014.04.023

PMid:24780648

Del Rio D, Stewart AJ, Pellegrini N. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc Dis. 2005;15(4):316-28.

https://doi.org/10.1016/j.numecd.2005.05.003

PMid:16054557

Esterbauer H. Estimation of peroxidative damage. A critical review. Pathol Biol (Paris). 1996;44(1):25-8.

Akamatsu H, Horio T, Hattori K. Increased hydrogen peroxide generation by neutrophils from patients with acne inflammation. Int J Dermatol. 2003;42(5):366-9.

https://doi.org/10.1046/j.1365-4362.2003.01540.x

PMid:12755973

Cerutti P, Shah G, Peskin A, Amstad P. Oxidant Carcinogenesis and Antioxidant Defensea. Ann N Y Acad Sci. 1992;663(1):158-66.

https://doi.org/10.1111/j.1749-6632.1992.tb38659.x

PMid:1482049

Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336(7650):924-6.

https://doi.org/10.1136/bmj.39489.470347.AD

PMid:18436948 PMCid:PMC2335261

Miller LS. Toll-like receptors in skin. Adv Dermatol. 2008;24:71.

https://doi.org/10.1016/j.yadr.2008.09.004

PMid:19256306 PMCid:PMC2633625

Lavieri R, Piccioli P, Carta S, Delfino L, Castellani P, Rubartelli A. TLR costimulation causes oxidative stress with unbalance of proinflammatory and anti-inflammatory cytokine production. J Immunol. 2014;192(11):5373-81.

https://doi.org/10.4049/jimmunol.1303480

PMid:24771848

Kim J, Ochoa M-T, Krutzik SR, Takeuchi O, Uematsu S, Legaspi AJ, et al. Activation of toll-like receptor 2 in acne triggers inflammatory cytokine responses. J Immunol. 2002;169(3):1535-41.

https://doi.org/10.4049/jimmunol.169.3.1535

PMid:12133981 PMCid:PMC4636337

Dispenza MC, Wolpert EB, Gilliland KL, Dai JP, Cong Z, Nelson AM, et al. Systemic isotretinoin therapy normalizes exaggerated TLR-2-mediated innate immune responses in acne patients. J Invest Dermatol. 2012;132(9):2198-205.

https://doi.org/10.1038/jid.2012.111

PMid:22513780 PMCid:PMC3614089

Selway JL, Kurczab T, Kealey T, Langlands K. Toll-like receptor 2 activation and comedogenesis: implications for the pathogenesis of acne. BMC dermatol. 2013;13(1):10.

https://doi.org/10.1186/1471-5945-13-10

PMid:24011352 PMCid:PMC3846817

Ingham E, Eady EA, Goodwin CE, Cove JH, Cunliffe WJ. Pro-Inflammatory Levels of Interleukin-1α-Like Bioactivity Are Present in the Majority of Open Comedones in Acne Vulgaris. J Invest Dermatol. 1992;98(6):895-901.

https://doi.org/10.1111/1523-1747.ep12460324

PMid:1534342

Romero MM, Basile JI, Corra Feo L, Lopez B, Ritacco V, Aleman M. Reactive oxygen species production by human dendritic cells involves TLR2 and dectin-1 and is essential for efficient immune response against Mycobacteria. Cell microbiol. 2016;18(6):875-86.

https://doi.org/10.1111/cmi.12562

PMid:26709456

Kavoosi G, Ardestani SK, Kariminia A. The involvement of TLR2 in cytokine and reactive oxygen species (ROS) production by PBMCs in response to Leishmania major phosphoglycans (PGs). Parasitology. 2009;136(10):1193-9.

https://doi.org/10.1017/S0031182009990473

PMid:19631014

Nathan C, Cunningham-Bussel A. Beyond oxidative stress: an immunologist's guide to reactive oxygen species. Nat Rev Immunol. 2013;13(5):349-61.

https://doi.org/10.1038/nri3423

PMid:23618831 PMCid:PMC4250048

Sasada M, Pabst M, Johnston R. Activation of mouse peritoneal macrophages by lipopolysaccharide alters the kinetic parameters of the superoxide-producing NADPH oxidase. J Biol Chem. 1983;258(16):9631-5.

PMid:6309777

Moldovan L, Irani K, Moldovan NI, Finkel T, Goldschmidt-Clermont PJ. The actin cytoskeleton reorganization induced by Rac1 requires the production of superoxide. Antioxid Redox Signal. 1999;1(1):29-43.

https://doi.org/10.1089/ars.1999.1.1-29

PMid:11225730

Michalik L, Auwerx J, Berger JP, Chatterjee VK, Glass CK, Gonzalez FJ et al. International Union of Pharmacology. LXI. Peroxisome proliferator-activated receptors. Pharmacol Rev. 2006;58(4):726-41.

https://doi.org/10.1124/pr.58.4.5

PMid:17132851

Ferré P. The biology of peroxisome proliferator-activated receptors. Diabetes. 2004;53(suppl 1):S43-S50.

https://doi.org/10.2337/diabetes.53.2007.S43

PMid:14749265

Ottaviani M, Camera E, Picardo M. Lipid mediators in acne. Mediators Inflamm. 2010;2010.

Zouboulis C, Bettoli V. Management of severe acne. Br J Dermatol. 2015;172(S1):27-36.

https://doi.org/10.1111/bjd.13639

PMid:25597508

Alestas T, Ganceviciene R, Fimmel S, Müller-Decker K, Zouboulis CC. Enzymes involved in the biosynthesis of leukotriene B4 and prostaglandin E2 are active in sebaceous glands. J Mol Med. 2006;84(1):75-87.

https://doi.org/10.1007/s00109-005-0715-8

PMid:16388388

Weindl G, Schäfer-Korting M, Schaller M, Korting HC. Peroxisome Proliferator-Activated Receptors and their Ligands. Drugs. 2005;65(14):1919-34.

https://doi.org/10.2165/00003495-200565140-00002

PMid:16162018

Koreck A, Pivarcsi A, Dobozy A, Kemeny L. The role of innate immunity in the pathogenesis of acne. Dermatology. 2003;206(2):96-105.

https://doi.org/10.1159/000068476

PMid:12592074

Briganti S, Picardo M. Antioxidant activity, lipid peroxidation and skin diseases. What's new. J Eur Acad Dermatol Venereol. 2003;17(6):663-9.

https://doi.org/10.1046/j.1468-3083.2003.00751.x

PMid:14761133

Akamatsu H, Horio T. The possible role of reactive oxygen species generated by neutrophils in mediating acne inflammation. Dermatology. 1998;196(1):82-5.

https://doi.org/10.1159/000017876

PMid:9557235

Matsubara T, Ziff M. Increased superoxide anion release from human endothelial cells in response to cytokines. J Immunol. 1986;137(10):3295-8.

PMid:3021851

Kasama T, Kobayashi K, Fukushima T, Tabata M, Ohno I, Negishi M, et al. Production of interleukin 1-like factor from human peripheral blood monocytes and polymorphonuclear leukocytes by superoxide anion: the role of interleukin 1 and reactive oxygen species in inflamed sites. Clin immunol immunopathol. 1989;53(3):439-48.

https://doi.org/10.1016/0090-1229(89)90006-8

Thielitz A, Helmdach M, Röpke EM, Gollnick H. Lipid analysis of follicular casts from cyanoacrylate strips as a new method for studying therapeutic effects of antiacne agents. Br J Dermatol. 2001;145(1):19-27.

https://doi.org/10.1046/j.1365-2133.2001.04276.x

PMid:11453902

Miyachi Y, Yoshioka A, Imamura S, Niwa Y. Effect of antibiotics on the generation of reactive oxygen species. J Invest Dermatol. 1986;86(4):449-53.

https://doi.org/10.1111/1523-1747.ep12285793

PMid:3755739

Laplante M, Sabatini DM. mTOR signaling at a glance. J cell sci. 2009;122(Pt 20):3589-94.

https://doi.org/10.1242/jcs.051011

PMid:19812304 PMCid:PMC2758797

Melnik B. Dietary intervention in acne: Attenuation of increased mTORC1 signaling promoted by Western diet. Dermatoendocrinol. 2012;4(1):20-32.

https://doi.org/10.4161/derm.19828

PMid:22870349 PMCid:PMC3408989

Laplante M, Sabatini DM. mTOR Signaling in Growth Control and Disease. Cell. 2012;149.

https://doi.org/10.1016/j.cell.2012.03.017

Pierdominici M, Vacirca D, Delunardo F, Ortona E. mTOR signaling and metabolic regulation of T cells: new potential therapeutic targets in autoimmune diseases. Curr pharm des. 2011;17(35):3888-97.

https://doi.org/10.2174/138161211798357809

PMid:21933144

Kwon HH, Yoon JY, HONg JS, Jung J, Park MS, Suh DH. Clinical and histological effect of a low glycaemic load diet in treatment of acne vulgaris in Korean patients: a randomized, controlled trial. Acta Derm Venereol. 2012;92(3):241-6.

https://doi.org/10.2340/00015555-1346

PMid:22678562

Smith RN, Mann NJ, Braue A, Mäkeläinen H, Varigos GA. A low-glycemic-load diet improves symptoms in acne vulgaris patients: a randomized controlled trial. Am J Clin Nutr. 2007;86(1):107-15.

https://doi.org/10.1093/ajcn/86.1.107

PMid:17616769

Jewell JL, Guan K-L. Nutrient signaling to mTOR and cell growth. Trends Biochem Sci. 2013;38(5):233-42.

https://doi.org/10.1016/j.tibs.2013.01.004

PMid:23465396 PMCid:PMC3634910

Melnik BC, Zouboulis CC. Potential role of FoxO1 and mTORC1 in the pathogenesis of Western diet‐induced acne. Exp Dermatol. 2013;22(5):311-5.

https://doi.org/10.1111/exd.12142

PMid:23614736 PMCid:PMC3746128

Agamia N, Abdallah D, Sorour O, Mourad B, Younan D. Skin expression of mammalian target of rapamycin and forkhead box transcription factor O1, and serum insulin‐like growth factor‐1 in patients with acne vulgaris and their relationship with diet. Br J Dermatol. 2016;174(6):1299-307.

https://doi.org/10.1111/bjd.14409

PMid:26799159

Monfrecola G, Lembo S, Caiazzo G, De Vita V, Di Caprio R, Balato A, et al. Mechanistic target of rapamycin (mTOR) expression is increased in acne patients' skin. Exp Dermatol. 2016;25(2):153-5.

https://doi.org/10.1111/exd.12885

PMid:26477999

Melnik B. Acne vulgaris: an inflammasomopathy of the sebaceous follicle induced by deviated FoxO1/mTORC1 signalling. Br J Dermatol. 2016;174(6):1186-8.

https://doi.org/10.1111/bjd.14564

PMid:27317281

Refbacks

  • There are currently no refbacks.