Protective Effect of Curcumin on CA1 Region of Hippocampus in Rat Model of Ischemia/Reperfusion Injury

  • Negin Yavari Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, California, USA
  • Zahra Nadia Sharifi Anatomical Sciences & Cognitive Neuroscience Department, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Herbal Pharmacology Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
  • Yasamin Rekabdar Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
  • Shabnam Movassaghi Anatomical Sciences & Cognitive Neuroscience Department, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Herbal Pharmacology Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
Keywords: Brain Ischemia, Hippocampus, Curcumin, Neuroprotective, Reperfusion


Background: The brain is the most complex and vital organ of the human body. It requires 20-25 % of the total oxygen supply. Because of the limited oxygen and glucose reserves, brain tissue is sensitive to ischemic injury. Indeed, the tolerance of brain tissue for ischemic injury is fragile. Currently, few therapeutic strategies could provide complete neuroprotection. Despite decades of intense research, the beneficial treatment of stroke remains limited. Hence, we aimed to investigate the effect of curcumin on the CA1 region of the hippocampus in a rat model of ischemia/reperfusion (I/R) injury. Materials and Methods: In this experimental research, 24 male Wistar rats were randomly divided into three groups (n=8 per group) as control, I/R, and I/R plus curcumin. All rats underwent bilateral common carotid artery ligation followed by reperfusion. In the treatment group, curcumin (300 mg/kg) was injected 30 minutes before ischemia. Morphological changes of the hippocampus were assessed using Nissl staining, and apoptosis was determined via TUNEL immunohistochemical assays. Results: Nissl staining data showed that the administration of curcumin significantly ameliorated the CA1 pyramidal cell loss due to transient global I/R injury. TUNEL immunohistochemical assays demonstrated that the number of apoptotic cells was significantly lower in the curcumin group than in the I/R groups. Conclusion: Our study demonstrates that curcumin had beneficial activity against ischemia and played a neuroprotective role in the pathogenesis of I/R injury.


Liu ZJ, Liu W, Liu L, Xiao C, Wang Y, Jiao JS. Curcumin Protects Neuron against Cerebral Ischemia-Induced Inflammation through Improving PPAR-Gamma Function. Evidence-based Complementary and Alternative Medicine. 2013:470975.

PMid:23762140 PMCid:PMC3670515

Li L, Li H, Li M. Curcumin protects against cerebral ischemia-reperfusion injury by activating JAK2/STAT3 signaling pathway in rats. Int J Clin Exp Med. 2015;8(9):14985-91.

Movassaghi S, Sharifi ZN, Soleimani M, Joghataii MT, Hashemi M, Shafaroodi H, et al. Effect of Pentoxifylline on Ischemia- induced Brain Damage and Spatial Memory Impairment in Rat. Iran J Basic Med Sci. 2012;15(5):1083-90.

Sharifi ZN, Abolhassani F, Zarrindast MR, Movassaghi S, Rahimian N, Hassanzadeh G. Effects of FK506 on hippocampal CA1 cells following transient global ischemia/reperfusion in Wistar rats. Int J Neurosci. 2012;1(1):1-19.

PMid:21941688 PMCid:PMC3175409

Faghani M, Ejlali F, Sharifi ZN, Molladoost H, Movassaghi S. The Neuroprotective effect of Atorvastatin on Apoptosis of Hippocampus Following Transient Global Ischemia/Reperfusion. Galen Med J. 2016;5(2):82-9.

Jangholi E, Sharifi ZN, Hoseinian M, Zarrindast MR, Rahimi HR, Mowla A, et al. Verapamil inhibits mitochondria-induced reactive oxygen species and dependent apoptosis pathways in cerebral transient global ischemia/reperfusion. Oxid Med Cell Longev. 2020;2020:5872645.

PMid:33133347 PMCid:PMC7591985

Wu J, Li Q, Wang X, Yu S, Li L, Wu X, et al. Neuroprotection by curcumin in ischemic brain injury involves the Akt/Nrf2 pathway. PloS One. 2013;8(3):e59843.

PMid:23555802 PMCid:PMC3610879

Bonfanti R, Musumeci T, Russo C, Pellitteri R. The protective effect of curcumin in Olfactory Ensheathing Cells exposed to hypoxia. Eur J Pharmacol. 2017;796:62-8.


Tu XK, Yang WZ, Chen JP, Chen Y, Ouyang LQ, Xu YC, et al. Curcumin inhibits TLR2/4-NF-kappaB signaling pathway and attenuates brain damage in permanent focal cerebral ischemia in rats. Inflamm. 2014;37(5):1544-51.


Wang Q, Sun AY, Simonyi A, Jensen MD, Shelat PB, Rottinghaus GE, et al. Neuroprotective mechanisms of curcumin against cerebral ischemia-induced neuronal apoptosis and behavioral deficits. J Neurosci Res. 2005;82(1):138-48.


Al-Omar FA, Nagi MN, Abdulgadir MM, Al Joni KS, Al-Majed AA. Immediate and delayed treatments with curcumin prevents forebrain ischemia-induced neuronal damage and oxidative insult in the rat hippocampus. Neurochem Res. 2006;31(5):611-8.


Bokura H, Robinson RG. Long-term cognitive impairment associated with caudate stroke. Stroke. 1997;28(5):970-5.


Erfani S, Khaksari M, Oryan S, Shamsaei N, Aboutaleb N, Nikbakht F. Nampt/PBEF/visfatin exerts neuroprotective effects against ischemia/reperfusion injury via modulation of Bax/Bcl-2 ratio and prevention of caspase-3 activation. J Mol Neurosci. 2015;56(1):237-43.


Liu Y, Nakamura T, Toyoshima T, Lu F, Sumitani K, Shinomiya A, et al. Ameliorative effects of yokukansan on behavioral deficits in a gerbil model of global cerebral ischemia. Brain Res. 2014;1543:300-7.


Kim S, Chin YW, Cho J. Protection of Cultured Cortical Neurons by Luteolin against Oxidative Damage through Inhibition of Apoptosis and Induction of Heme Oxygenase-1. Biol Pharm Bull. 2017;40(3):256-65.


Kumar KH, Khanum F. Hydroalcoholic extract of cyperus rotundus ameliorates H2O2-induced human neuronal cell damage via its anti-oxidative and anti-apoptotic machinery. Cell Mol Neurobiol. 2013;33(1):5-17.


Lakhan SE, Kirchgessner A, Hofer M. Inflammatory mechanisms in ischemic stroke: therapeutic approaches. J Transl Med. 2009;7:97.

PMid:19919699 PMCid:PMC2780998

Lim CM, Kim SW, Park JY, Kim C, Yoon SH, Lee JK. Fluoxetine affords robust neuroprotection in the postischemic brain via its anti-inflammatory effect. J Neurosci Res. 2009;87(4):1037-45.


Zhu H, Fan Y, Sun H, Chen L, Man X. Curcumin inhibits endoplasmic reticulum stress induced by cerebral ischemia-reperfusion injury in rats. Exp Med. 2017;14(5):4047-52.

PMid:29067098 PMCid:PMC5647704

Kunwar A, Barik A, Sandur SK, Indira Priyadarsini K. Differential antioxidant/pro-oxidant activity of dimethoxycurcumin, a synthetic analogue of curcumin. Free Radic Res. 2011;45(8):959-65.


Gupta SC, Patchva S, Koh W, Aggarwal BB. Discovery of curcumin, a component of golden spice, and its miraculous biological activities. Clin Exp Pharmacol Physiol. 2012;39(3):283-99.

PMid:22118895 PMCid:PMC3288651

Thiyagarajan M, Sharma SS. Neuroprotective effect of curcumin in middle cerebral artery occlusion induced focal cerebral ischemia in rats. Life Sci. 2004;74(8):969-85.


Chhunchha B, Fatma N, Kubo E, Rai P, Singh SP, Singh DP. Curcumin abates hypoxia-induced oxidative stress based-ER stress-mediated cell death in mouse hippocampal cells (HT22) by controlling Prdx6 and NF-kappaB regulation. Am J Physiol Cell Physiol. 2013;304(7):C636-55.

PMid:23364261 PMCid:PMC3625714

Feng HL, Dang HZ, Fan H, Chen XP, Rao YX, Ren Y, et al. Curcumin ameliorates insulin signalling pathway in brain of Alzheimer's disease transgenic mice. Int J Immunopathol Pharmacol. 2016;29(4):734-41.

PMid:27466310 PMCid:PMC5806850

Jiang TF, Zhang YJ, Zhou HY, Wang HM, Tian LP, Liu J, et al. Curcumin ameliorates the neurodegenerative pathology in A53T alpha-synuclein cell model of Parkinson's disease through the downregulation of mTOR/p70S6K signaling and the recovery of macroautophagy. J Neuroimmune Pharmacol.2013;8(1):356-69.


Jiang J, Wang W, Sun YJ, Hu M, Li F, Zhu DY. Neuroprotective effect of curcumin on focal cerebral ischemic rats by preventing blood-brain barrier damage. Eur J Pharmacol. 2007;561(1-3):54-62.


Pan MH, Huang TM, Lin JK. Biotransformation of curcumin through reduction and glucuronidation in mice. Drug Metab Dispos. 1999;27(4):486-94.

Zhao J, Zhao Y, Zheng W, Lu Y, Feng G, Yu S. Neuroprotective effect of curcumin on transient focal cerebral ischemia in rats. Brain Res. 2008;1229:224-32.


Yu CC, Hu H, Wang XD, Cao H, Ji B, Li J. Effect of curcumin on the injury in hippocampal neurons and the expression of RANTES in hippocamp during cerebral ischemia/ reperfusion in spontaneously hypertensive rats SHR. Chin J Appl Physiol. 2014;30(4):360-4.

Huang S, Wang B, Zhang ZQ, Meng ZY, Cao H, Lian QQ, et al. Effect of curcumin on the expression of high mobility group box 1 and apoptotic neurons in hippocampus after global cerebral ischemia reperfusion in rats. Zhonghua Yi Xue Za Zhi. 2011;91(19):1340-3.

Ye KP, Chen CR, Zheng JW, Cao H, Ji B, Zhou R, et al. Effect of curcumine on the nuclear pathway of JNK dur-ing hippocampal ischemia/reperfusion injury in SHR. Chin J Appl Physiol. 2010;26(4):416-20.

How to Cite
Yavari, N., Sharifi, Z. N., Rekabdar, Y., & Movassaghi, S. (2022). Protective Effect of Curcumin on CA1 Region of Hippocampus in Rat Model of Ischemia/Reperfusion Injury. Galen Medical Journal, 11, e1062.
Original Article