Contradictory Effect of Notch1 and Notch2 on Phosphatase and Tensin Homolog and its Influence on Glioblastoma Angiogenesis
Abstract
Many genes induce angiogenesis in tumors, and among them, Notch family genes have received particular attention due to their extensive network of connections with other genes active in this function. Suppression of angiogenic signaling has been studied in various cancers, confirming Notch's fundamental and extensive role. According to studies, four Notch genes work independently with many genes such as vascular endothelial growth factor, phosphatase and tensin homolog, Phosphoinositide 3-kinase/Akt, and matrix metalloproteinases, and so many other genes, as well as proteins (such as hypoxia-inducible factor-1 alpha) significantly affect tumor angiogenesis. Notch1 regular activity in a healthy person causes angiogenesis in body tissues, controlled by normal Notch2 activity. However, in many cases of glioblastoma, whether on patients or tumor xenografts or in vivo models, a mutation in one of these two essential genes or at least one of the genes and proteins that affected by them can cause better angiogenesis in hypoxic conditions and lead to become an invasive tumor. In this review, we examined the contrasting activity of Notch1 and Notch2 and the signaling cascade that each generates in the angiogenesis of glioblastoma, the most invasive cancer of the central nervous system. [GMJ.2021;10:e2091]References
Yan D, Hao C, Xiao-feng L, Yu-chen L, Yu-bin F, Lei Z. Molecular mechanism of Notch signaling with special emphasis on microRNAs: Implications for glioma. J Cell Physiol. 2018;234:158-70.
https://doi.org/10.1002/jcp.26775
PMid:30076599
Molofsky A V, Krencik R, Krenick R, Ullian EM, Ullian E, Tsai H, et al. Astrocytes and disease: a neurodevelopmental perspective. Genes Dev. 2012; 26(9):891-907.
https://doi.org/10.1101/gad.188326.112
PMid:22549954 PMCid:PMC3347787
Parpura V, Heneka MT, Montana V, Oliet SHR, Schousboe A, Haydon PG, et al. Glial cells in physiology. J Neurochem. 2012;121:4-27.
https://doi.org/10.1111/j.1471-4159.2012.07664.x
PMid:22251135 PMCid:PMC3304021
Pekny M, Wilhelmsson U, Pekna M. The dual role of astrocyte activation and reactive gliosis. Neurosci Lett. 2014;565:30-8.
https://doi.org/10.1016/j.neulet.2013.12.071
PMid:24406153
Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol. 2016; 131(6):803-20.
https://doi.org/10.1007/s00401-016-1545-1
PMid:27157931
Clarke J, Butowski N, Chang S. Recent Advances in Therapy for Glioblastoma. Arch Neurol . 2010;67(3):279-83.
https://doi.org/10.1001/archneurol.2010.5
PMid:20212224
Wesolowski JR, Rajdev P, Mukherji SK. Temozolomide (Temodar). AJNR Am J Neuroradiol. 2010;31(8):1383-4.
https://doi.org/10.3174/ajnr.A2170
PMid:20538821 PMCid:PMC7966084
Roy S, Lahiri D, Maji T, Biswas J. Recurrent Glioblastoma: Where we stand. South Asian J Cancer. 2015;4(4):163-73.
https://doi.org/10.4103/2278-330X.175953
PMid:26981507 PMCid:PMC4772393
Wilson T, Karajannis M, Harter D. Glioblastoma multiforme: State of the art and future therapeutics. Surg Neurol Int . 2014;5:64.
https://doi.org/10.4103/2152-7806.132138
PMid:24991467 PMCid:PMC4078454
Mathieu P, Adami PVM, Morelli L. Notch signaling in the pathologic adult brain. Biomol Concepts. 2013;4(5):465-76.
https://doi.org/10.1515/bmc-2013-0006
PMid:25436753
Bray SJ. Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol. 2006;7(9):678-89.
https://doi.org/10.1038/nrm2009
PMid:16921404
Wang J, Yan Z, Liu X, Che S, Wang C, Yao W. Alpinetin targets glioma stem cells by suppressing Notch pathway. Tumour Biol. 2016;37(7):9243-8.
https://doi.org/10.1007/s13277-016-4827-2
PMid:26768745
Liau BB, Sievers C, Donohue LK, Gillespie SM, Flavahan WA, Miller TE, et al. Adaptive Chromatin Remodeling Drives Glioblastoma Stem Cell Plasticity and Drug Tolerance. Cell Stem Cell. 2017;20(2):233-46.e7.
https://doi.org/10.1016/j.stem.2016.11.003
PMid:27989769 PMCid:PMC5291795
Jin Z, Zhan T, Tao J, Xu B, Zheng H, Cheng Y, et al. MicroRNA - 34a induces transdifferentiation of glioma stem cells into vascular endothelial cells by targeting Notch pathway. Biosci Biotechnol Biochem. 2017;81(10):1899-1907.
https://doi.org/10.1080/09168451.2017.1364965
PMid:28859546
Kanamori M, Kawaguchi T, Nigro JM, Feuerstein BG, Berger MS, Miele L, et al. Contribution of Notch signaling activation to human glioblastoma multiforme. J Neurosurg. 2007;106(3):417-27.
https://doi.org/10.3171/jns.2007.106.3.417
PMid:17367064
Hulleman E, Quarto M, Vernell R, Masserdotti G, Colli E, Kros JM, et al. A role for the transcription factor HEY1 in glioblastoma. J Cell Mol Med. 2008;13(1):136-46.
https://doi.org/10.1111/j.1582-4934.2008.00307.x
PMid:18363832 PMCid:PMC3823042
Zhang X, Chen T, Zhang J, Mao Q, Li S, Xiong W, et al. Notch1 promotes glioma cell migration and invasion by stimulating β-catenin and NF-κB signaling via AKT activation. Cancer Sci. 2012;103(2):181-90.
https://doi.org/10.1111/j.1349-7006.2011.02154.x
PMid:22093097
Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD, et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell. 2006;9(3):157-73.
https://doi.org/10.1016/j.ccr.2006.02.019
PMid:16530701
Somasundaram K, Reddy SP, Vinnakota K, Britto R, Subbarayan M, Nambiar S, et al. Upregulation of ASCL1 and inhibition of Notch signaling pathway characterize progressive astrocytoma. Oncogene. 2005;24(47):7073-83.
https://doi.org/10.1038/sj.onc.1208865
PMid:16103883
Nye JS, Kopan R, Axel R. An activated Notch suppresses neurogenesis and myogenesis but not gliogenesis in mammalian cells. Development. 1994;120(9):2421-30.
https://doi.org/10.1242/dev.120.9.2421
PMid:7956822
Morrison SJ, Perez SE, Qiao Z, Verdi JM, Hicks C, Weinmaster G, et al. Transient Notch activation initiates an irreversible switch from neurogenesis to gliogenesis by neural crest stem cells . 2000;101(5):499-510.
https://doi.org/10.1016/S0092-8674(00)80860-0
Xing Z, Sun L, Guo W. Elevated expression of Notch-1 and EGFR induced apoptosis in glioblastoma multiforme patients. Clin Neurol Neurosurg . 2015;131:54-8.
https://doi.org/10.1016/j.clineuro.2015.01.018
PMid:25704190
Han N, Hu G, Shi L, Long G, Yang L, Xi Q, Guo Q, Wang J, Dong Z, Zhang M. Notch1 ablation radiosensitizes glioblastoma cells. Oncotarget. 2017;8(50):88059-68.
https://doi.org/10.18632/oncotarget.21409
PMid:29152141 PMCid:PMC5675693
Demuth T, Berens ME. Molecular Mechanisms of Glioma Cell Migration and Invasion. J Neurooncol. 2004;70(2):217-28.
https://doi.org/10.1007/s11060-004-2751-6
PMid:15674479
Zhai H, Heppner FL, Tsirka SE. Microglia/macrophages promote glioma progression. Glia . 2011;59(3):472-85.
https://doi.org/10.1002/glia.21117
PMid:21264953 PMCid:PMC3080032
Alterman RL, Stanley ER. Colony stimulating factor-1 expression in human glioma. Mol Chem Neuropathol. 1994;21(2-3):177-88.
https://doi.org/10.1007/BF02815350
PMid:8086034
Wang Z, Li Y, Banerjee S, Kong D, Ahmad A, Nogueira V, Hay N, Sarkar FH. Down-regulation of Notch-1 and Jagged-1 inhibits prostate cancer cell growth, migration and invasion, and induces apoptosis via inactivation of Akt, mTOR, and NF-kappaB signaling pathways. J Cell Biochem. 2010;109(4):726-36.
https://doi.org/10.1002/jcb.22451
PMid:20052673
Graziani I, Eliasz S, De Marco MA, Chen Y, Pass HI, De May RM, et al. Opposite effects of Notch-1 and Notch-2 on mesothelioma cell survival under hypoxia are exerted through the Akt pathway. Cancer Res. 2008;68(23):9678-85.
https://doi.org/10.1158/0008-5472.CAN-08-0969
PMid:19047145
Yu HP, Qi ST, Feng WF, Zhang GZ, Zhang HP, Tian JJ. Interference of Notch 2 inhibits the progression of gliomas and induces cell apoptosis by induction of the cell cycle at the G0/G1 phase. Mol Med Rep. 2015;11(1):734-8.
https://doi.org/10.3892/mmr.2014.2747
PMid:25338527
Dell'Albani P, Rodolico M, Pellitteri R, Tricarichi E, Torrisi SA, D'Antoni S, et al. Differential patterns of NOTCH1-4 receptor expression are markers of glioma cell differentiation. Neuro Oncol. 2014;16(2):204-16.
https://doi.org/10.1093/neuonc/not168
PMid:24305720 PMCid:PMC3895382
Tchorz JS, Tome M, Cloëtta D, Sivasankaran B, Grzmil M, Huber RM, et al. Constitutive Notch2 signaling in neural stem cells promotes tumorigenic features and astroglial lineage entry. Cell Death Dis. 2012;3(6):e325.
https://doi.org/10.1038/cddis.2012.65
PMid:22717580 PMCid:PMC3388237
Guo L-Y. Notch2 regulates matrix metallopeptidase 9 via PI3K/AKT signaling in human gastric carcinoma cell MKN-45. World J Gastroenterol. 2012;18(48):7262-70.
https://doi.org/10.3748/wjg.v18.i48.7262
PMid:23326131 PMCid:PMC3544028
Hofmann JJ, Iruela-Arispe ML. Notch signaling in blood vessels: who is talking to whom about what?. Circ Res. 2007;100(11):1556-68.
https://doi.org/10.1161/01.RES.0000266408.42939.e4
PMid:17556669
Liu H, Zhang W, Kennard S, Caldwell RB, Lilly B. Notch3 Is Critical for Proper Angiogenesis and Mural Cell Investment. Circ Res. 2010;107(7):860-70.
https://doi.org/10.1161/CIRCRESAHA.110.218271
PMid:20689064 PMCid:PMC2948576
Villa N, Walker L, Lindsell CE, Gasson J, Iruela-Arispe ML, Weinmaster G. Vascular expression of Notch pathway receptors and ligands is restricted to arterial vessels. Mech Dev. 2001;108(1-2):161-4.
https://doi.org/10.1016/S0925-4773(01)00469-5
Loomes KM, Taichman DB, Glover CL, Williams PT, Markowitz JE, Piccoli DA, et al. Characterization of Notch receptor expression in the developing mammalian heart and liver. Am J Med Genet. 2002;112(2):181-9.
https://doi.org/10.1002/ajmg.10592
PMid:12244553
Lindsell CE, Boulter J, diSibio G, Gossler A, Weinmaster G. Expression Patterns ofJagged, Delta1, Notch1, Notch2,andNotch3Genes Identify Ligand-Receptor Pairs That May Function in Neural Development. Mol Cell Neurosci. 1996;8(1):14-27.
https://doi.org/10.1006/mcne.1996.0040
PMid:8923452
Joutel A, Andreux F, Gaulis S, Domenga V, Cecillon M, Battail N, et al. The ectodomain of the Notch3 receptor accumulates within the cerebrovasculature of CADASIL patients. J Clin Invest. 2000;105(5):597-605.
https://doi.org/10.1172/JCI8047
PMid:10712431 PMCid:PMC289174
Wang T, Baron M, Trump D. An overview of Notch3 function in vascular smooth muscle cells. Prog Biophys Mol Biol. 2008;96(1-3):499-509.
https://doi.org/10.1016/j.pbiomolbio.2007.07.006
PMid:17854869
Alqudah MAY, Agarwal S, Al-Keilani MS, Sibenaller ZA, Ryken TC, Assem M. NOTCH3 Is a Prognostic Factor That Promotes Glioma Cell Proliferation, Migration and Invasion via Activation of CCND1 and EGFR. PLoS One. 2013;8(10):e77299.
https://doi.org/10.1371/journal.pone.0077299
PMid:24143218 PMCid:PMC3797092
Liu H, Kennard S, Lilly B. NOTCH3 Expression Is Induced in Mural Cells Through an Autoregulatory Loop That Requires Endothelial-Expressed JAGGED1. Circ Res. 2009;104(4):466-75.
https://doi.org/10.1161/CIRCRESAHA.108.184846
PMid:19150886 PMCid:PMC2747310
Uyttendaele H, Marazzi G, Wu G, Yan Q, Sassoon D, Kitajewski J. Notch4/int-3, a mammary proto-oncogene, is an endothelial cell-specific mammalian Notch gene. Development. 1996;122(7):2251-9.
https://doi.org/10.1242/dev.122.7.2251
PMid:8681805
Bolós V, Grego-Bessa J, de la Pompa JL. Notch Signaling in Development and Cancer. Endocr Rev. 2007;28(3):339-63.
https://doi.org/10.1210/er.2006-0046
PMid:17409286
Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch Signaling: Cell Fate Control and Signal Integration in Development. Science. 1999;284(5415):770-6.
https://doi.org/10.1126/science.284.5415.770
PMid:10221902
Hanahan D, Folkman J. Patterns and Emerging Mechanisms of the Angiogenic Switch during Tumorigenesis. Cell. 1996;86(3):353-64.
https://doi.org/10.1016/S0092-8674(00)80108-7
Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch. Nat Rev Cancer. 2003;3(6):401-10.
https://doi.org/10.1038/nrc1093
PMid:12778130
Sharma A, Shiras A. Cancer stem cell-vascular endothelial cell interactions in glioblastoma. Biochem Biophys Res Commun. 2016;473(3):688-92.
https://doi.org/10.1016/j.bbrc.2015.12.022
PMid:26692486
Williams CK, Segarra M, De La Luz Sierra M, Sainson RCA, Tosato G, Harris AL. Regulation of CXCR4 by the Notch Ligand Delta-like 4 in Endothelial Cells. Cancer Res. 2008;68(6):1889-95.
https://doi.org/10.1158/0008-5472.CAN-07-2181
PMid:18339870
El Hindy N, Keyvani K, Pagenstecher A, Dammann P, Sandalcioglu IE, Sure U, et al. Implications of Dll4-Notch signaling activation in primary glioblastoma multiforme. Neuro Oncol. 2013;15(10):1366-78.
https://doi.org/10.1093/neuonc/not071
PMid:23787764 PMCid:PMC3779034
Li Z, Wang J, Gong L, Wen Z, Xu C, Huang X. Correlation of Delta-like ligand 4 (DLL4) with VEGF and HIF-1α expression in human glioma. Asian Pac J Cancer Prev. 2011;12(1):215-8.
Qiu X, Chen L, Wang C, Lin Z, Zhou C, Liu S, et al. High Delta-Like Ligand 4 (DLL4) Is Correlated With Peritumoral Brain Edema and Predicts Poor Prognosis in Primary Glioblastoma. Medicine (Baltimore). 2014;93(8):e57.
https://doi.org/10.1097/MD.0000000000000057
PMid:25121357 PMCid:PMC4602445
Qiu X, Wang C, Lin Z, You N, Wang X, Chen Y, et al. Correlation of high delta-like ligand 4 expression with peritumoral brain edema and its prediction of poor prognosis in patients with primary high-grade gliomas. J Neurosurg. 2015;123(6):1578-85.
https://doi.org/10.3171/2014.12.JNS14768
PMid:26047413
Li J-L, Sainson RCA, Oon CE, Turley H, Leek R, Sheldon H, et al. DLL4-Notch Signaling Mediates Tumor Resistance to Anti-VEGF Therapy In Vivo. Cancer Res. 2011;71(18):6073-83.
https://doi.org/10.1158/0008-5472.CAN-11-1704
PMid:21803743
Kenig S, Alonso MBD, Mueller MM, Lah TT. Glioblastoma and endothelial cells cross-talk, mediated by SDF-1, enhances tumour invasion and endothelial proliferation by increasing expression of cathepsins B, S, and MMP-9. Cancer Lett. 2010;289(1):53-61
https://doi.org/10.1016/j.canlet.2009.07.014
PMid:19700239
Cheng L, Huang Z, Zhou W, Wu Q, Donnola S, Liu JK, et al. Glioblastoma Stem Cells Generate Vascular Pericytes to Support Vessel Function and Tumor Growth. Cell. 2013;153(1):139-52.
https://doi.org/10.1016/j.cell.2013.02.021
PMid:23540695 PMCid:PMC3638263
Ridgway J, Zhang G, Wu Y, Stawicki S, Liang W-C, Chanthery Y, et al. Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature. 2006;444(7122):1083-7.
https://doi.org/10.1038/nature05313
PMid:17183323
Noguera-Troise I, Daly C, Papadopoulos NJ, Coetzee S, Boland P, Gale NW, et al. Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Nature. 2006; 444(7122):1032-7.
https://doi.org/10.1038/nature05355
PMid:17183313
Lobov IB, Renard RA, Papadopoulos N, Gale NW, Thurston G, Yancopoulos GD, et al. Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proc Natl Acad Sci. 2007;104(9):3219-24.
https://doi.org/10.1073/pnas.0611206104
PMid:17296940 PMCid:PMC1805530
R B, M H. Notch as a hub for signaling in angiogenesis. Exp Cell Res. 2013;319(9):1281-8.
https://doi.org/10.1016/j.yexcr.2013.01.010
PMid:23328307
Qiu X, Wang C, You N, Chen B, Wang X, Chen Y, et al. High Jagged1 expression is associated with poor outcome in primary glioblastoma. Med Oncol . 2015;32(1):341.
https://doi.org/10.1007/s12032-014-0341-9
PMid:25424769
Jubb AM, Browning L, Campo L, Turley H, Steers G, Thurston G, et al. Expression of vascular Notch ligands Delta-like 4 and Jagged-1 in glioblastoma. Histopathology. 2012;60(5):740-7.
https://doi.org/10.1111/j.1365-2559.2011.04138.x
PMid:22296176
Zhang J, Chen Y, Qiu X, Tang W, Zhang J, Huang J, et al. The vascular delta-like ligand-4 (DLL4)-Notch4 signaling correlates with angiogenesis in primary glioblastoma: an immunohistochemical study. Tumor Biol. 2016;37(3):3797-805.
https://doi.org/10.1007/s13277-015-4202-8
PMid:26472724
Zheng Y, Lin L, Zheng Z. TGF- α induces upregulation and nuclear translocation of Hes1 in glioma cell. Cell Biochem Funct. 2008;26(6):692-700.
https://doi.org/10.1002/cbf.1494
PMid:18636433
Palomero T, Lim WK, Odom DT, Sulis ML, Real PJ, Margolin A, et al. NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. Proc Natl Acad Sci U S A. 2006;103(48):18261-6.
https://doi.org/10.1073/pnas.0606108103
PMid:17114293 PMCid:PMC1838740
Jarriault S, Brou C, Logeat F, Schroeter EH, Kopan R, Israel A. Signalling downstream of activated mammalian Notch. Nature. 1995;377(6547):355-8.
https://doi.org/10.1038/377355a0
PMid:7566092
Weng AP, Millholland JM, Yashiro-Ohtani Y, Arcangeli ML, Lau A, Wai C, et al. c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev . 2006;20(15):2096-109.
https://doi.org/10.1101/gad.1450406
PMid:16847353 PMCid:PMC1536060
Satoh Y, Matsumura I, Tanaka H, Ezoe S, Sugahara H, Mizuki M, et al. Roles for c-Myc in Self-renewal of Hematopoietic Stem Cells. J Biol Chem. 2004;279(24):24986-93.
https://doi.org/10.1074/jbc.M400407200
PMid:15067010
Mongiardi MP. Angiogenesis and hypoxia in glioblastoma: a focus on cancer stem cells. CNS Neurol Disord Drug Targets . 2012;11(7):878-83.
https://doi.org/10.2174/1871527311201070878
PMid:23131159
Irshad K, Mohapatra SK, Srivastava C, Garg H, Mishra S, Dikshit B, et al. A Combined Gene Signature of Hypoxia and Notch Pathway in Human Glioblastoma and Its Prognostic Relevance. PLoS One. 2015;10(3):e0118201.
https://doi.org/10.1371/journal.pone.0118201
PMid:25734817 PMCid:PMC4348203
Chigurupati S, Venkataraman R, Barrera D, Naganathan A, Madan M, Paul L, et al. Receptor Channel TRPC6 Is a Key Mediator of Notch-Driven Glioblastoma Growth and Invasiveness. Cancer Res. 2010;70(1):418-27.
https://doi.org/10.1158/0008-5472.CAN-09-2654
PMid:20028870
Bar EE, Lin A, Mahairaki V, Matsui W, Eberhart CG. Hypoxia Increases the Expression of Stem-Cell Markers and Promotes Clonogenicity in Glioblastoma Neurospheres. Am J Pathol. 2010;177(3):1491-502.
https://doi.org/10.2353/ajpath.2010.091021
PMid:20671264 PMCid:PMC2928980
Das S, Marsden PA. Angiogenesis in glioblastoma. N Engl J Med. 2013;369(16):1561-3.
https://doi.org/10.1056/NEJMcibr1309402
PMid:24131182 PMCid:PMC5378489
Rehman AO, Wang C-Y. Notch signaling in the regulation of tumor angiogenesis. Trends Cell Biol. 2006;16(6):293-300.
https://doi.org/10.1016/j.tcb.2006.04.003
PMid:16697642
Li X, He X, Tian W, Wang J. Short hairpin RNA targeting Notch2 inhibits U87 human glioma cell proliferation by inducing cell cycle arrest and apoptosis in vitro and in vivo. Mol Med Rep. 2014;10(6):2843-50.
https://doi.org/10.3892/mmr.2014.2661
PMid:25323114 PMCid:PMC4227426
Liu Y, Shen Y, Sun T, Yang W. Mechanisms regulating radiosensitivity of glioma stem cells. Neoplasma . 2017;64(5):655-65.
https://doi.org/10.4149/neo_2017_502
PMid:28592117
Skinner HD, Zheng JZ, Fang J, Agani F, Jiang BH. Vascular endothelial growth factor transcriptional activation is mediated by hypoxia-inducible factor 1α, HDM2, and p70S6K1 in response to phosphatidylinositol 3-kinase/AKT signaling. J Biol Chem. 2004;279(44):45643-51.
https://doi.org/10.1074/jbc.M404097200
PMid:15337760
Shukla S, MacLennan GT, Hartman DJ, Fu P, Resnick MI, Gupta S. Activation of PI3K-Akt signaling pathway promotes prostate cancer cell invasion. Int J Cancer. 2007;121(7):1424-32.
https://doi.org/10.1002/ijc.22862
PMid:17551921
Chen JS, Wang Q, Fu XH, Huang XH, Chen XL, Cao LQ, et al. Involvement of PI3K/PTEN/AKT/mTOR pathway in invasion and metastasis in hepatocellular carcinoma: Association with MMP-9. Hepatol Res. 2009;39(2):177-86.
https://doi.org/10.1111/j.1872-034X.2008.00449.x
PMid:19208038
Jiang BH, Liu LZ. Chapter 2 PI3K/PTEN Signaling in Angiogenesis and Tumorigenesis. Adv Cancer Res. 2009;102:19-65.
https://doi.org/10.1016/S0065-230X(09)02002-8
Liu P, Cheng H, Roberts TM, Zhao JJ. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov. 2009;8(8):627-44.
https://doi.org/10.1038/nrd2926
PMid:19644473 PMCid:PMC3142564
Xu Y, Yuan F-E, Chen Q-X, Liu B-H. Molecular mechanisms involved in angiogenesis and potential target of antiangiogenesis in human glioblastomas. Glioma. 2018;1(2):35.
https://doi.org/10.4103/glioma.glioma_10_17
Matsumura S, Oue N, Nakayama H, Kitadai Y, Yoshida K, Yamaguchi Y, et al. A single nucleotide polymorphism in the MMP-9 promoter affects tumor progression and invasive phenotype of gastric cancer. J Cancer Res Clin Oncol. 2005;131(1):19-25.
https://doi.org/10.1007/s00432-004-0621-4
PMid:15565457
Valastyan S, Weinberg RA. Tumor metastasis: Molecular insights and evolving paradigms. Cell. 2011; 147(2):275-92.
https://doi.org/10.1016/j.cell.2011.09.024
PMid:22000009 PMCid:PMC3261217
Tian B, Li Y, Ji XN, Chen J, Xue Q, Ye SL, et al. Basement membrane proteins play an active role in the invasive process of human hepatocellular carcinoma cells with high metastasis potential. J Cancer Res Clin Oncol. 2005;131(2):80-6.
https://doi.org/10.1007/s00432-004-0614-3
PMid:15480781
Wroblewski LE, Pritchard DM, Carter S, Varro A. Gastrin-stimulated gastric epithelial cell invasion: The role and mechanism of increased matrix metalloproteinase 9 expression. Biochem J. 2002;365(Pt 3):873-9.
https://doi.org/10.1042/bj20020068
PMid:11971760 PMCid:PMC1222716
Zheng H, Takahashi H, Murai Y, Cui Z, Nomoto K, Niwa H, et al. Expressions of MMP-2, MMP-9 and VEGF are closely linked to growth, invasion, metastasis and angiogenesis of gastric carcinoma. Anticancer Res. 2006;26(5A):3579-83.
Lee LY, Wu CM, Wang CC, Yu JS, Liang Y, Huang KH, et al. Expression of matrix metalloproteinases MMP-2 and MMP-9 in gastric cancer and their relation to claudin-4 expression. Histol Histopathol . 2008;23(5):515-21.
Pellikainen JM, Ropponen KM, Kataja V V., Kellokoski JK, Eskelinen MJ, Kosma VM. Expression of matrix metalloproteinase (MMP)-2 and MMP-9 in breast cancer with a special reference to activator protein-2, HER2, and prognosis. Clin Cancer Res . 2004;10(22):7621-8.
https://doi.org/10.1158/1078-0432.CCR-04-1061
PMid:15569994
Hashimoto T, Wen G, Lawton MT, Boudreau NJ, Bollen AW, Yang GY, et al. Abnormal expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in brain arteriovenous malformations. Stroke . 2003;34(4):925-31.
https://doi.org/10.1161/01.STR.0000061888.71524.DF
PMid:12649522
Sakata K, Shigemasa K, Nagai N, Ohama K. Expression of matrix metalloproteinases (MMP-2, MMP-9, MT1-MMP) and their inhibitors (TIMP-1, TIMP-2) in common epithelial tumors of the ovary. Int J Oncol. 2000;17(4):673-81.
https://doi.org/10.3892/ijo.17.4.673
PMid:10995877
Endersby R, Baker SJ. PTEN signaling in brain: neuropathology and tumorigenesis. Oncogene. 2008;27(41):5416-30.
https://doi.org/10.1038/onc.2008.239
PMid:18794877
Knobbe CB, Merlo A, Reifenberger G. Pten signaling in gliomas. Neuro Oncol . Narnia. 2002;4(3):196-211.
https://doi.org/10.1215/15228517-4-3-196
PMid:12084351 PMCid:PMC1920635
Koul D. PTEN Signaling pathways in glioblastoma. Cancer Biol Ther . Taylor & Francis. 2008 ;7(9):1321-5.
https://doi.org/10.4161/cbt.7.9.6954
PMid:18836294
Okumura N, Yoshida H, Kitagishi Y, Murakami M, Nishimura Y, Matsuda S. PI3K/AKT/PTEN Signaling as a Molecular Target in Leukemia Angiogenesis. Adv Hematol. 2012;2012:843085.
https://doi.org/10.1155/2012/843085
PMid:22505939 PMCid:PMC3299269
Nan Y, Guo L, Song Y, Wang L, Yu K, Huang Q, et al. Combinatorial therapy with adenoviral-mediated PTEN and a PI3K inhibitor suppresses malignant glioma cell growth in vitro and in vivo by regulating the PI3K/AKT signaling pathway. J Cancer Res Clin Oncol. 2017;143(8):1477-87.
https://doi.org/10.1007/s00432-017-2415-5
PMid:28401302
Kessler T, Sahm F, Blaes J, Osswald M, Rübmann P, Milford D, et al. Glioma cell VEGFR-2 confers resistance to chemotherapeutic and antiangiogenic treatments in PTEN-deficient glioblastoma. Oncotarget. 2015;6(31):31050-68.
https://doi.org/10.18632/oncotarget.2910
PMid:25682871 PMCid:PMC4741588
Han L, Zhang AL, Xu P, Yue X, Yang Y, Wang GX, et al. Combination gene therapy with PTEN and EGFR siRNA suppresses U251 malignant glioma cell growth in vitro and in vivo. Med Oncol. 2010;27(3):843-52.
https://doi.org/10.1007/s12032-009-9295-8
PMid:19728186
Zhou X, Ren Y, Moore L, Mei M, You Y, Xu P, et al. Downregulation of miR-21 inhibits EGFR pathway and suppresses the growth of human glioblastoma cells independent of PTEN status. Lab Investig. 2010;90(2):144-55.
https://doi.org/10.1038/labinvest.2009.126
PMid:20048743
Wang J, Wang C, Meng Q, Li S, Sun X, Bo Y, et al. siRNA targeting Notch-1 decreases glioma stem cell proliferation and tumor growth. Mol Biol Rep. 2012;39:2497-503.
https://doi.org/10.1007/s11033-011-1001-1
PMid:21667253
Hosseini MM, Karimi A, Behroozaghdam M, Javidi MA, Ghiasvand S, Bereimipour A, et al. Cytotoxic and Apoptogenic Effects of Cyanidin-3-Glucoside on the Glioblastoma Cell Line. World Neurosurg. 2017;108:94-100.
https://doi.org/10.1016/j.wneu.2017.08.133
PMid:28867321

Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).