Contradictory Effect of Notch1 and Notch2 on Phosphatase and Tensin Homolog and its Influence on Glioblastoma Angiogenesis

  • Mostafa Shabani 1. Medical Genomics Research Center, Tehran Medical Sciences Islamic Azad University, Tehran, Iran 2. Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
  • Hamid Taghvaei Javanshir 1. Medical Genomics Research Center, Tehran Medical Sciences Islamic Azad University, Tehran, Iran 2. Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
  • Ahmad Bereimipour 2. Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran 3. Young Researchers and Elite Club, Tehran Medical Sciences Islamic Azad University, Tehran, Iran
  • Amin Ebrahimi Sadrabadi 2. Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
  • Arsalan Jalili 2. Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
  • Karim Nayernia 4. International Center for Personalized Medicine, Düsseldorf, Germany
Keywords: Glioblastoma; Angiogenesis; Notch1; Notch2

Abstract

Many genes induce angiogenesis in tumors, and among them, Notch family genes have received particular attention due to their extensive network of connections with other genes active in this function. Suppression of angiogenic signaling has been studied in various cancers, confirming Notch's fundamental and extensive role. According to studies, four Notch genes work independently with many genes such as vascular endothelial growth factor, phosphatase and tensin homolog, Phosphoinositide 3-kinase/Akt, and matrix metalloproteinases, and so many other genes, as well as proteins (such as hypoxia-inducible factor-1 alpha) significantly affect tumor angiogenesis. Notch1 regular activity in a healthy person causes angiogenesis in body tissues, controlled by normal Notch2 activity. However, in many cases of glioblastoma, whether on patients or tumor xenografts or in vivo models, a mutation in one of these two essential genes or at least one of the genes and proteins that affected by them can cause better angiogenesis in hypoxic conditions and lead to become an invasive tumor. In this review, we examined the contrasting activity of Notch1 and Notch2 and the signaling cascade that each generates in the angiogenesis of glioblastoma, the most invasive cancer of the central nervous system. [GMJ.2021;10:e2091]

References

Yan D, Hao C, Xiao-feng L, Yu-chen L, Yu-bin F, Lei Z. Molecular mechanism of Notch signaling with special emphasis on microRNAs: Implications for glioma. J Cell Physiol. 2018;234:158-70.

https://doi.org/10.1002/jcp.26775

PMid:30076599

Molofsky A V, Krencik R, Krenick R, Ullian EM, Ullian E, Tsai H, et al. Astrocytes and disease: a neurodevelopmental perspective. Genes Dev. 2012; 26(9):891-907.

https://doi.org/10.1101/gad.188326.112

PMid:22549954 PMCid:PMC3347787

Parpura V, Heneka MT, Montana V, Oliet SHR, Schousboe A, Haydon PG, et al. Glial cells in physiology. J Neurochem. 2012;121:4-27.

https://doi.org/10.1111/j.1471-4159.2012.07664.x

PMid:22251135 PMCid:PMC3304021

Pekny M, Wilhelmsson U, Pekna M. The dual role of astrocyte activation and reactive gliosis. Neurosci Lett. 2014;565:30-8.

https://doi.org/10.1016/j.neulet.2013.12.071

PMid:24406153

Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol. 2016; 131(6):803-20.

https://doi.org/10.1007/s00401-016-1545-1

PMid:27157931

Clarke J, Butowski N, Chang S. Recent Advances in Therapy for Glioblastoma. Arch Neurol . 2010;67(3):279-83.

https://doi.org/10.1001/archneurol.2010.5

PMid:20212224

Wesolowski JR, Rajdev P, Mukherji SK. Temozolomide (Temodar). AJNR Am J Neuroradiol. 2010;31(8):1383-4.

https://doi.org/10.3174/ajnr.A2170

PMid:20538821 PMCid:PMC7966084

Roy S, Lahiri D, Maji T, Biswas J. Recurrent Glioblastoma: Where we stand. South Asian J Cancer. 2015;4(4):163-73.

https://doi.org/10.4103/2278-330X.175953

PMid:26981507 PMCid:PMC4772393

Wilson T, Karajannis M, Harter D. Glioblastoma multiforme: State of the art and future therapeutics. Surg Neurol Int . 2014;5:64.

https://doi.org/10.4103/2152-7806.132138

PMid:24991467 PMCid:PMC4078454

Mathieu P, Adami PVM, Morelli L. Notch signaling in the pathologic adult brain. Biomol Concepts. 2013;4(5):465-76.

https://doi.org/10.1515/bmc-2013-0006

PMid:25436753

Bray SJ. Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol. 2006;7(9):678-89.

https://doi.org/10.1038/nrm2009

PMid:16921404

Wang J, Yan Z, Liu X, Che S, Wang C, Yao W. Alpinetin targets glioma stem cells by suppressing Notch pathway. Tumour Biol. 2016;37(7):9243-8.

https://doi.org/10.1007/s13277-016-4827-2

PMid:26768745

Liau BB, Sievers C, Donohue LK, Gillespie SM, Flavahan WA, Miller TE, et al. Adaptive Chromatin Remodeling Drives Glioblastoma Stem Cell Plasticity and Drug Tolerance. Cell Stem Cell. 2017;20(2):233-46.e7.

https://doi.org/10.1016/j.stem.2016.11.003

PMid:27989769 PMCid:PMC5291795

Jin Z, Zhan T, Tao J, Xu B, Zheng H, Cheng Y, et al. MicroRNA - 34a induces transdifferentiation of glioma stem cells into vascular endothelial cells by targeting Notch pathway. Biosci Biotechnol Biochem. 2017;81(10):1899-1907.

https://doi.org/10.1080/09168451.2017.1364965

PMid:28859546

Kanamori M, Kawaguchi T, Nigro JM, Feuerstein BG, Berger MS, Miele L, et al. Contribution of Notch signaling activation to human glioblastoma multiforme. J Neurosurg. 2007;106(3):417-27.

https://doi.org/10.3171/jns.2007.106.3.417

PMid:17367064

Hulleman E, Quarto M, Vernell R, Masserdotti G, Colli E, Kros JM, et al. A role for the transcription factor HEY1 in glioblastoma. J Cell Mol Med. 2008;13(1):136-46.

https://doi.org/10.1111/j.1582-4934.2008.00307.x

PMid:18363832 PMCid:PMC3823042

Zhang X, Chen T, Zhang J, Mao Q, Li S, Xiong W, et al. Notch1 promotes glioma cell migration and invasion by stimulating β-catenin and NF-κB signaling via AKT activation. Cancer Sci. 2012;103(2):181-90.

https://doi.org/10.1111/j.1349-7006.2011.02154.x

PMid:22093097

Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD, et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell. 2006;9(3):157-73.

https://doi.org/10.1016/j.ccr.2006.02.019

PMid:16530701

Somasundaram K, Reddy SP, Vinnakota K, Britto R, Subbarayan M, Nambiar S, et al. Upregulation of ASCL1 and inhibition of Notch signaling pathway characterize progressive astrocytoma. Oncogene. 2005;24(47):7073-83.

https://doi.org/10.1038/sj.onc.1208865

PMid:16103883

Nye JS, Kopan R, Axel R. An activated Notch suppresses neurogenesis and myogenesis but not gliogenesis in mammalian cells. Development. 1994;120(9):2421-30.

https://doi.org/10.1242/dev.120.9.2421

PMid:7956822

Morrison SJ, Perez SE, Qiao Z, Verdi JM, Hicks C, Weinmaster G, et al. Transient Notch activation initiates an irreversible switch from neurogenesis to gliogenesis by neural crest stem cells . 2000;101(5):499-510.

https://doi.org/10.1016/S0092-8674(00)80860-0

Xing Z, Sun L, Guo W. Elevated expression of Notch-1 and EGFR induced apoptosis in glioblastoma multiforme patients. Clin Neurol Neurosurg . 2015;131:54-8.

https://doi.org/10.1016/j.clineuro.2015.01.018

PMid:25704190

Han N, Hu G, Shi L, Long G, Yang L, Xi Q, Guo Q, Wang J, Dong Z, Zhang M. Notch1 ablation radiosensitizes glioblastoma cells. Oncotarget. 2017;8(50):88059-68.

https://doi.org/10.18632/oncotarget.21409

PMid:29152141 PMCid:PMC5675693

Demuth T, Berens ME. Molecular Mechanisms of Glioma Cell Migration and Invasion. J Neurooncol. 2004;70(2):217-28.

https://doi.org/10.1007/s11060-004-2751-6

PMid:15674479

Zhai H, Heppner FL, Tsirka SE. Microglia/macrophages promote glioma progression. Glia . 2011;59(3):472-85.

https://doi.org/10.1002/glia.21117

PMid:21264953 PMCid:PMC3080032

Alterman RL, Stanley ER. Colony stimulating factor-1 expression in human glioma. Mol Chem Neuropathol. 1994;21(2-3):177-88.

https://doi.org/10.1007/BF02815350

PMid:8086034

Wang Z, Li Y, Banerjee S, Kong D, Ahmad A, Nogueira V, Hay N, Sarkar FH. Down-regulation of Notch-1 and Jagged-1 inhibits prostate cancer cell growth, migration and invasion, and induces apoptosis via inactivation of Akt, mTOR, and NF-kappaB signaling pathways. J Cell Biochem. 2010;109(4):726-36.

https://doi.org/10.1002/jcb.22451

PMid:20052673

Graziani I, Eliasz S, De Marco MA, Chen Y, Pass HI, De May RM, et al. Opposite effects of Notch-1 and Notch-2 on mesothelioma cell survival under hypoxia are exerted through the Akt pathway. Cancer Res. 2008;68(23):9678-85.

https://doi.org/10.1158/0008-5472.CAN-08-0969

PMid:19047145

Yu HP, Qi ST, Feng WF, Zhang GZ, Zhang HP, Tian JJ. Interference of Notch 2 inhibits the progression of gliomas and induces cell apoptosis by induction of the cell cycle at the G0/G1 phase. Mol Med Rep. 2015;11(1):734-8.

https://doi.org/10.3892/mmr.2014.2747

PMid:25338527

Dell'Albani P, Rodolico M, Pellitteri R, Tricarichi E, Torrisi SA, D'Antoni S, et al. Differential patterns of NOTCH1-4 receptor expression are markers of glioma cell differentiation. Neuro Oncol. 2014;16(2):204-16.

https://doi.org/10.1093/neuonc/not168

PMid:24305720 PMCid:PMC3895382

Tchorz JS, Tome M, Cloëtta D, Sivasankaran B, Grzmil M, Huber RM, et al. Constitutive Notch2 signaling in neural stem cells promotes tumorigenic features and astroglial lineage entry. Cell Death Dis. 2012;3(6):e325.

https://doi.org/10.1038/cddis.2012.65

PMid:22717580 PMCid:PMC3388237

Guo L-Y. Notch2 regulates matrix metallopeptidase 9 via PI3K/AKT signaling in human gastric carcinoma cell MKN-45. World J Gastroenterol. 2012;18(48):7262-70.

https://doi.org/10.3748/wjg.v18.i48.7262

PMid:23326131 PMCid:PMC3544028

Hofmann JJ, Iruela-Arispe ML. Notch signaling in blood vessels: who is talking to whom about what?. Circ Res. 2007;100(11):1556-68.

https://doi.org/10.1161/01.RES.0000266408.42939.e4

PMid:17556669

Liu H, Zhang W, Kennard S, Caldwell RB, Lilly B. Notch3 Is Critical for Proper Angiogenesis and Mural Cell Investment. Circ Res. 2010;107(7):860-70.

https://doi.org/10.1161/CIRCRESAHA.110.218271

PMid:20689064 PMCid:PMC2948576

Villa N, Walker L, Lindsell CE, Gasson J, Iruela-Arispe ML, Weinmaster G. Vascular expression of Notch pathway receptors and ligands is restricted to arterial vessels. Mech Dev. 2001;108(1-2):161-4.

https://doi.org/10.1016/S0925-4773(01)00469-5

Loomes KM, Taichman DB, Glover CL, Williams PT, Markowitz JE, Piccoli DA, et al. Characterization of Notch receptor expression in the developing mammalian heart and liver. Am J Med Genet. 2002;112(2):181-9.

https://doi.org/10.1002/ajmg.10592

PMid:12244553

Lindsell CE, Boulter J, diSibio G, Gossler A, Weinmaster G. Expression Patterns ofJagged, Delta1, Notch1, Notch2,andNotch3Genes Identify Ligand-Receptor Pairs That May Function in Neural Development. Mol Cell Neurosci. 1996;8(1):14-27.

https://doi.org/10.1006/mcne.1996.0040

PMid:8923452

Joutel A, Andreux F, Gaulis S, Domenga V, Cecillon M, Battail N, et al. The ectodomain of the Notch3 receptor accumulates within the cerebrovasculature of CADASIL patients. J Clin Invest. 2000;105(5):597-605.

https://doi.org/10.1172/JCI8047

PMid:10712431 PMCid:PMC289174

Wang T, Baron M, Trump D. An overview of Notch3 function in vascular smooth muscle cells. Prog Biophys Mol Biol. 2008;96(1-3):499-509.

https://doi.org/10.1016/j.pbiomolbio.2007.07.006

PMid:17854869

Alqudah MAY, Agarwal S, Al-Keilani MS, Sibenaller ZA, Ryken TC, Assem M. NOTCH3 Is a Prognostic Factor That Promotes Glioma Cell Proliferation, Migration and Invasion via Activation of CCND1 and EGFR. PLoS One. 2013;8(10):e77299.

https://doi.org/10.1371/journal.pone.0077299

PMid:24143218 PMCid:PMC3797092

Liu H, Kennard S, Lilly B. NOTCH3 Expression Is Induced in Mural Cells Through an Autoregulatory Loop That Requires Endothelial-Expressed JAGGED1. Circ Res. 2009;104(4):466-75.

https://doi.org/10.1161/CIRCRESAHA.108.184846

PMid:19150886 PMCid:PMC2747310

Uyttendaele H, Marazzi G, Wu G, Yan Q, Sassoon D, Kitajewski J. Notch4/int-3, a mammary proto-oncogene, is an endothelial cell-specific mammalian Notch gene. Development. 1996;122(7):2251-9.

https://doi.org/10.1242/dev.122.7.2251

PMid:8681805

Bolós V, Grego-Bessa J, de la Pompa JL. Notch Signaling in Development and Cancer. Endocr Rev. 2007;28(3):339-63.

https://doi.org/10.1210/er.2006-0046

PMid:17409286

Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch Signaling: Cell Fate Control and Signal Integration in Development. Science. 1999;284(5415):770-6.

https://doi.org/10.1126/science.284.5415.770

PMid:10221902

Hanahan D, Folkman J. Patterns and Emerging Mechanisms of the Angiogenic Switch during Tumorigenesis. Cell. 1996;86(3):353-64.

https://doi.org/10.1016/S0092-8674(00)80108-7

Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch. Nat Rev Cancer. 2003;3(6):401-10.

https://doi.org/10.1038/nrc1093

PMid:12778130

Sharma A, Shiras A. Cancer stem cell-vascular endothelial cell interactions in glioblastoma. Biochem Biophys Res Commun. 2016;473(3):688-92.

https://doi.org/10.1016/j.bbrc.2015.12.022

PMid:26692486

Williams CK, Segarra M, De La Luz Sierra M, Sainson RCA, Tosato G, Harris AL. Regulation of CXCR4 by the Notch Ligand Delta-like 4 in Endothelial Cells. Cancer Res. 2008;68(6):1889-95.

https://doi.org/10.1158/0008-5472.CAN-07-2181

PMid:18339870

El Hindy N, Keyvani K, Pagenstecher A, Dammann P, Sandalcioglu IE, Sure U, et al. Implications of Dll4-Notch signaling activation in primary glioblastoma multiforme. Neuro Oncol. 2013;15(10):1366-78.

https://doi.org/10.1093/neuonc/not071

PMid:23787764 PMCid:PMC3779034

Li Z, Wang J, Gong L, Wen Z, Xu C, Huang X. Correlation of Delta-like ligand 4 (DLL4) with VEGF and HIF-1α expression in human glioma. Asian Pac J Cancer Prev. 2011;12(1):215-8.

Qiu X, Chen L, Wang C, Lin Z, Zhou C, Liu S, et al. High Delta-Like Ligand 4 (DLL4) Is Correlated With Peritumoral Brain Edema and Predicts Poor Prognosis in Primary Glioblastoma. Medicine (Baltimore). 2014;93(8):e57.

https://doi.org/10.1097/MD.0000000000000057

PMid:25121357 PMCid:PMC4602445

Qiu X, Wang C, Lin Z, You N, Wang X, Chen Y, et al. Correlation of high delta-like ligand 4 expression with peritumoral brain edema and its prediction of poor prognosis in patients with primary high-grade gliomas. J Neurosurg. 2015;123(6):1578-85.

https://doi.org/10.3171/2014.12.JNS14768

PMid:26047413

Li J-L, Sainson RCA, Oon CE, Turley H, Leek R, Sheldon H, et al. DLL4-Notch Signaling Mediates Tumor Resistance to Anti-VEGF Therapy In Vivo. Cancer Res. 2011;71(18):6073-83.

https://doi.org/10.1158/0008-5472.CAN-11-1704

PMid:21803743

Kenig S, Alonso MBD, Mueller MM, Lah TT. Glioblastoma and endothelial cells cross-talk, mediated by SDF-1, enhances tumour invasion and endothelial proliferation by increasing expression of cathepsins B, S, and MMP-9. Cancer Lett. 2010;289(1):53-61

https://doi.org/10.1016/j.canlet.2009.07.014

PMid:19700239

Cheng L, Huang Z, Zhou W, Wu Q, Donnola S, Liu JK, et al. Glioblastoma Stem Cells Generate Vascular Pericytes to Support Vessel Function and Tumor Growth. Cell. 2013;153(1):139-52.

https://doi.org/10.1016/j.cell.2013.02.021

PMid:23540695 PMCid:PMC3638263

Ridgway J, Zhang G, Wu Y, Stawicki S, Liang W-C, Chanthery Y, et al. Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature. 2006;444(7122):1083-7.

https://doi.org/10.1038/nature05313

PMid:17183323

Noguera-Troise I, Daly C, Papadopoulos NJ, Coetzee S, Boland P, Gale NW, et al. Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Nature. 2006; 444(7122):1032-7.

https://doi.org/10.1038/nature05355

PMid:17183313

Lobov IB, Renard RA, Papadopoulos N, Gale NW, Thurston G, Yancopoulos GD, et al. Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proc Natl Acad Sci. 2007;104(9):3219-24.

https://doi.org/10.1073/pnas.0611206104

PMid:17296940 PMCid:PMC1805530

R B, M H. Notch as a hub for signaling in angiogenesis. Exp Cell Res. 2013;319(9):1281-8.

https://doi.org/10.1016/j.yexcr.2013.01.010

PMid:23328307

Qiu X, Wang C, You N, Chen B, Wang X, Chen Y, et al. High Jagged1 expression is associated with poor outcome in primary glioblastoma. Med Oncol . 2015;32(1):341.

https://doi.org/10.1007/s12032-014-0341-9

PMid:25424769

Jubb AM, Browning L, Campo L, Turley H, Steers G, Thurston G, et al. Expression of vascular Notch ligands Delta-like 4 and Jagged-1 in glioblastoma. Histopathology. 2012;60(5):740-7.

https://doi.org/10.1111/j.1365-2559.2011.04138.x

PMid:22296176

Zhang J, Chen Y, Qiu X, Tang W, Zhang J, Huang J, et al. The vascular delta-like ligand-4 (DLL4)-Notch4 signaling correlates with angiogenesis in primary glioblastoma: an immunohistochemical study. Tumor Biol. 2016;37(3):3797-805.

https://doi.org/10.1007/s13277-015-4202-8

PMid:26472724

Zheng Y, Lin L, Zheng Z. TGF- α induces upregulation and nuclear translocation of Hes1 in glioma cell. Cell Biochem Funct. 2008;26(6):692-700.

https://doi.org/10.1002/cbf.1494

PMid:18636433

Palomero T, Lim WK, Odom DT, Sulis ML, Real PJ, Margolin A, et al. NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. Proc Natl Acad Sci U S A. 2006;103(48):18261-6.

https://doi.org/10.1073/pnas.0606108103

PMid:17114293 PMCid:PMC1838740

Jarriault S, Brou C, Logeat F, Schroeter EH, Kopan R, Israel A. Signalling downstream of activated mammalian Notch. Nature. 1995;377(6547):355-8.

https://doi.org/10.1038/377355a0

PMid:7566092

Weng AP, Millholland JM, Yashiro-Ohtani Y, Arcangeli ML, Lau A, Wai C, et al. c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev . 2006;20(15):2096-109.

https://doi.org/10.1101/gad.1450406

PMid:16847353 PMCid:PMC1536060

Satoh Y, Matsumura I, Tanaka H, Ezoe S, Sugahara H, Mizuki M, et al. Roles for c-Myc in Self-renewal of Hematopoietic Stem Cells. J Biol Chem. 2004;279(24):24986-93.

https://doi.org/10.1074/jbc.M400407200

PMid:15067010

Mongiardi MP. Angiogenesis and hypoxia in glioblastoma: a focus on cancer stem cells. CNS Neurol Disord Drug Targets . 2012;11(7):878-83.

https://doi.org/10.2174/1871527311201070878

PMid:23131159

Irshad K, Mohapatra SK, Srivastava C, Garg H, Mishra S, Dikshit B, et al. A Combined Gene Signature of Hypoxia and Notch Pathway in Human Glioblastoma and Its Prognostic Relevance. PLoS One. 2015;10(3):e0118201.

https://doi.org/10.1371/journal.pone.0118201

PMid:25734817 PMCid:PMC4348203

Chigurupati S, Venkataraman R, Barrera D, Naganathan A, Madan M, Paul L, et al. Receptor Channel TRPC6 Is a Key Mediator of Notch-Driven Glioblastoma Growth and Invasiveness. Cancer Res. 2010;70(1):418-27.

https://doi.org/10.1158/0008-5472.CAN-09-2654

PMid:20028870

Bar EE, Lin A, Mahairaki V, Matsui W, Eberhart CG. Hypoxia Increases the Expression of Stem-Cell Markers and Promotes Clonogenicity in Glioblastoma Neurospheres. Am J Pathol. 2010;177(3):1491-502.

https://doi.org/10.2353/ajpath.2010.091021

PMid:20671264 PMCid:PMC2928980

Das S, Marsden PA. Angiogenesis in glioblastoma. N Engl J Med. 2013;369(16):1561-3.

https://doi.org/10.1056/NEJMcibr1309402

PMid:24131182 PMCid:PMC5378489

Rehman AO, Wang C-Y. Notch signaling in the regulation of tumor angiogenesis. Trends Cell Biol. 2006;16(6):293-300.

https://doi.org/10.1016/j.tcb.2006.04.003

PMid:16697642

Li X, He X, Tian W, Wang J. Short hairpin RNA targeting Notch2 inhibits U87 human glioma cell proliferation by inducing cell cycle arrest and apoptosis in vitro and in vivo. Mol Med Rep. 2014;10(6):2843-50.

https://doi.org/10.3892/mmr.2014.2661

PMid:25323114 PMCid:PMC4227426

Liu Y, Shen Y, Sun T, Yang W. Mechanisms regulating radiosensitivity of glioma stem cells. Neoplasma . 2017;64(5):655-65.

https://doi.org/10.4149/neo_2017_502

PMid:28592117

Skinner HD, Zheng JZ, Fang J, Agani F, Jiang BH. Vascular endothelial growth factor transcriptional activation is mediated by hypoxia-inducible factor 1α, HDM2, and p70S6K1 in response to phosphatidylinositol 3-kinase/AKT signaling. J Biol Chem. 2004;279(44):45643-51.

https://doi.org/10.1074/jbc.M404097200

PMid:15337760

Shukla S, MacLennan GT, Hartman DJ, Fu P, Resnick MI, Gupta S. Activation of PI3K-Akt signaling pathway promotes prostate cancer cell invasion. Int J Cancer. 2007;121(7):1424-32.

https://doi.org/10.1002/ijc.22862

PMid:17551921

Chen JS, Wang Q, Fu XH, Huang XH, Chen XL, Cao LQ, et al. Involvement of PI3K/PTEN/AKT/mTOR pathway in invasion and metastasis in hepatocellular carcinoma: Association with MMP-9. Hepatol Res. 2009;39(2):177-86.

https://doi.org/10.1111/j.1872-034X.2008.00449.x

PMid:19208038

Jiang BH, Liu LZ. Chapter 2 PI3K/PTEN Signaling in Angiogenesis and Tumorigenesis. Adv Cancer Res. 2009;102:19-65.

https://doi.org/10.1016/S0065-230X(09)02002-8

Liu P, Cheng H, Roberts TM, Zhao JJ. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov. 2009;8(8):627-44.

https://doi.org/10.1038/nrd2926

PMid:19644473 PMCid:PMC3142564

Xu Y, Yuan F-E, Chen Q-X, Liu B-H. Molecular mechanisms involved in angiogenesis and potential target of antiangiogenesis in human glioblastomas. Glioma. 2018;1(2):35.

https://doi.org/10.4103/glioma.glioma_10_17

Matsumura S, Oue N, Nakayama H, Kitadai Y, Yoshida K, Yamaguchi Y, et al. A single nucleotide polymorphism in the MMP-9 promoter affects tumor progression and invasive phenotype of gastric cancer. J Cancer Res Clin Oncol. 2005;131(1):19-25.

https://doi.org/10.1007/s00432-004-0621-4

PMid:15565457

Valastyan S, Weinberg RA. Tumor metastasis: Molecular insights and evolving paradigms. Cell. 2011; 147(2):275-92.

https://doi.org/10.1016/j.cell.2011.09.024

PMid:22000009 PMCid:PMC3261217

Tian B, Li Y, Ji XN, Chen J, Xue Q, Ye SL, et al. Basement membrane proteins play an active role in the invasive process of human hepatocellular carcinoma cells with high metastasis potential. J Cancer Res Clin Oncol. 2005;131(2):80-6.

https://doi.org/10.1007/s00432-004-0614-3

PMid:15480781

Wroblewski LE, Pritchard DM, Carter S, Varro A. Gastrin-stimulated gastric epithelial cell invasion: The role and mechanism of increased matrix metalloproteinase 9 expression. Biochem J. 2002;365(Pt 3):873-9.

https://doi.org/10.1042/bj20020068

PMid:11971760 PMCid:PMC1222716

Zheng H, Takahashi H, Murai Y, Cui Z, Nomoto K, Niwa H, et al. Expressions of MMP-2, MMP-9 and VEGF are closely linked to growth, invasion, metastasis and angiogenesis of gastric carcinoma. Anticancer Res. 2006;26(5A):3579-83.

Lee LY, Wu CM, Wang CC, Yu JS, Liang Y, Huang KH, et al. Expression of matrix metalloproteinases MMP-2 and MMP-9 in gastric cancer and their relation to claudin-4 expression. Histol Histopathol . 2008;23(5):515-21.

Pellikainen JM, Ropponen KM, Kataja V V., Kellokoski JK, Eskelinen MJ, Kosma VM. Expression of matrix metalloproteinase (MMP)-2 and MMP-9 in breast cancer with a special reference to activator protein-2, HER2, and prognosis. Clin Cancer Res . 2004;10(22):7621-8.

https://doi.org/10.1158/1078-0432.CCR-04-1061

PMid:15569994

Hashimoto T, Wen G, Lawton MT, Boudreau NJ, Bollen AW, Yang GY, et al. Abnormal expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in brain arteriovenous malformations. Stroke . 2003;34(4):925-31.

https://doi.org/10.1161/01.STR.0000061888.71524.DF

PMid:12649522

Sakata K, Shigemasa K, Nagai N, Ohama K. Expression of matrix metalloproteinases (MMP-2, MMP-9, MT1-MMP) and their inhibitors (TIMP-1, TIMP-2) in common epithelial tumors of the ovary. Int J Oncol. 2000;17(4):673-81.

https://doi.org/10.3892/ijo.17.4.673

PMid:10995877

Endersby R, Baker SJ. PTEN signaling in brain: neuropathology and tumorigenesis. Oncogene. 2008;27(41):5416-30.

https://doi.org/10.1038/onc.2008.239

PMid:18794877

Knobbe CB, Merlo A, Reifenberger G. Pten signaling in gliomas. Neuro Oncol . Narnia. 2002;4(3):196-211.

https://doi.org/10.1215/15228517-4-3-196

PMid:12084351 PMCid:PMC1920635

Koul D. PTEN Signaling pathways in glioblastoma. Cancer Biol Ther . Taylor & Francis. 2008 ;7(9):1321-5.

https://doi.org/10.4161/cbt.7.9.6954

PMid:18836294

Okumura N, Yoshida H, Kitagishi Y, Murakami M, Nishimura Y, Matsuda S. PI3K/AKT/PTEN Signaling as a Molecular Target in Leukemia Angiogenesis. Adv Hematol. 2012;2012:843085.

https://doi.org/10.1155/2012/843085

PMid:22505939 PMCid:PMC3299269

Nan Y, Guo L, Song Y, Wang L, Yu K, Huang Q, et al. Combinatorial therapy with adenoviral-mediated PTEN and a PI3K inhibitor suppresses malignant glioma cell growth in vitro and in vivo by regulating the PI3K/AKT signaling pathway. J Cancer Res Clin Oncol. 2017;143(8):1477-87.

https://doi.org/10.1007/s00432-017-2415-5

PMid:28401302

Kessler T, Sahm F, Blaes J, Osswald M, Rübmann P, Milford D, et al. Glioma cell VEGFR-2 confers resistance to chemotherapeutic and antiangiogenic treatments in PTEN-deficient glioblastoma. Oncotarget. 2015;6(31):31050-68.

https://doi.org/10.18632/oncotarget.2910

PMid:25682871 PMCid:PMC4741588

Han L, Zhang AL, Xu P, Yue X, Yang Y, Wang GX, et al. Combination gene therapy with PTEN and EGFR siRNA suppresses U251 malignant glioma cell growth in vitro and in vivo. Med Oncol. 2010;27(3):843-52.

https://doi.org/10.1007/s12032-009-9295-8

PMid:19728186

Zhou X, Ren Y, Moore L, Mei M, You Y, Xu P, et al. Downregulation of miR-21 inhibits EGFR pathway and suppresses the growth of human glioblastoma cells independent of PTEN status. Lab Investig. 2010;90(2):144-55.

https://doi.org/10.1038/labinvest.2009.126

PMid:20048743

Wang J, Wang C, Meng Q, Li S, Sun X, Bo Y, et al. siRNA targeting Notch-1 decreases glioma stem cell proliferation and tumor growth. Mol Biol Rep. 2012;39:2497-503.

https://doi.org/10.1007/s11033-011-1001-1

PMid:21667253

Hosseini MM, Karimi A, Behroozaghdam M, Javidi MA, Ghiasvand S, Bereimipour A, et al. Cytotoxic and Apoptogenic Effects of Cyanidin-3-Glucoside on the Glioblastoma Cell Line. World Neurosurg. 2017;108:94-100.

https://doi.org/10.1016/j.wneu.2017.08.133

PMid:28867321

Published
2021-10-05
How to Cite
Shabani, M., Taghvaei Javanshir, H., Bereimipour, A., Ebrahimi Sadrabadi, A., Jalili, A., & Nayernia, K. (2021). Contradictory Effect of Notch1 and Notch2 on Phosphatase and Tensin Homolog and its Influence on Glioblastoma Angiogenesis. Galen Medical Journal, 10, e2091. https://doi.org/10.31661/gmj.v10i0.2091