Effect of Sodium Butyrate and Epigallocatechin-3-Gallate on the Genes Expression of Intrinsic Apoptotic Pathway on PA-TU-8902, CFPAC-1, and CAPAN-1 Human Pancreatic Cancer Cell Lines

  • Masumeh Sanaei Research Center for Non-Communicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran
  • Fraidoon Kavoosi Research Center for Non-Communicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran
  • Iraj Poursadgh Soufiani Student of Research Committee, Jahrom University of Medical Sciences, Jahrom, Iran
Keywords: Sodium Butyrate, Epigallocatechin-3-Gallate, Gene Expression Regulation, Pancreatic Cancer

Abstract

Background: Histone deacetylase inhibitors (HDACIs) are novel anticancer agents that induce cell death and cycle arrest. Several studies reported that HDACIs induce apoptosis via two well-defined intrinsic/mitochondrial and death receptor pathways. In addition to HDACIs, DNA methyltransferase inhibitors effectively revert the promoter hypermethylation of tumor suppressor genes and apoptosis induction. The current study aimed to investigate the effect of sodium butyrate and epigallocatechin-3-gallate (EGCG) on the genes expression of the intrinsic pathway (BAX, BAK, APAF1, Bcl-2, and Bcl-xL), p21, and p53 on PA-TU-8902, CFPAC-1, and CAPAN-1 human pancreatic cancer cell lines. Materials and Methods: The PA-TU-8902, CFPAC-1, and CAPAN-1 cells were treated with sodium butyrate and EGCG. To determine cell viability, cell apoptosis, and the relative gene expression level, the 3-(4,4-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, flow cytometry, and real-time quantitative reverse transcription polymerase chain reaction were done, respectively. Results: Both compounds changed the expression levels of the mentioned genes in a p53-dependent and -independent manner, which induced cell apoptosis and inhibited cell growth in all three cell lines. Conclusion: We indicated that sodium butyrate and EGCG could induce apoptosis in human pancreatic cancer cell lines.

References

Bolden JE, Peart MJ, Johnstone RW. Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov. 2006;5(9):769-84.

https://doi.org/10.1038/nrd2133

PMid:16955068

Walkinshaw DR, Yang XJ. Histone deacetylase inhibitors as novel anticancer therapeutics. Curr Oncol. 2008;15(5):237-43.

https://doi.org/10.3747/co.v15i5.371

Rosato RR, Grant S. Histone deacetylase inhibitors in cancer therapy. Cancer biology & therapy. 2003;2(1):31-8.

https://doi.org/10.4161/cbt.190

PMid:12673114

Sanaei M, Kavoosi F. Effect of Zebularine in Comparison to and in Combination with Trichostatin A on CIP/KIP Family (p21Cip1/Waf1/Sdi1, p27Kip1, and p57Kip2), DNMTs (DNMT1, DNMT3a, and DNMT3b), Class I HDACs (HDACs 1, 2, 3) and Class II HDACs (HDACs 4, 5, 6) Gene Expression, Cell Growth Inhibition and Apoptosis Induction in Colon Cancer LS 174T Cell Line. Asian Pac J Cancer Prev. 2020;21(7):2131-9.

https://doi.org/10.31557/APJCP.2020.21.7.2131

PMid:32711442 PMCid:PMC7573409

Sanaei M, Kavoosi F, Arabloo M. Effect of Curcumin in Comparison With Trichostatin A on the Reactivation of Estrogen Receptor Alpha Gene Expression, Cell Growth Inhibition and Apoptosis Induction in Hepatocellular Carcinoma Hepa 1-6 Cell lLine. Asian Pac J Cancer Prev. 2020;21(4):1045-50.

https://doi.org/10.31557/APJCP.2020.21.4.1045

PMid:32334468 PMCid:PMC7445996

Matthews GM, Newbold A, Johnstone RW. Intrinsic and extrinsic apoptotic pathway signaling as determinants of histone deacetylase inhibitor antitumor activity. Adv Cancer Res. 2012;116:165-97.

https://doi.org/10.1016/B978-0-12-394387-3.00005-7

PMid:23088871

Stresemann C, Brueckner B, Musch T, Stopper H, Lyko F. Functional diversity of DNA methyltransferase inhibitors in human cancer cell lines. Cancer Res. 2006;66(5):2794-800.

https://doi.org/10.1158/0008-5472.CAN-05-2821

PMid:16510601

Issa JP. DNA methylation as a therapeutic target in cancer. Clin Cancer Res. 2007;13(6):1634-7.

https://doi.org/10.1158/1078-0432.CCR-06-2076

PMid:17363514

Flotho C, Claus R, Batz C, Schneider M, Sandrock I, Ihde S, et al. The DNA methyltransferase inhibitors azacitidine, decitabine and zebularine exert differential effects on cancer gene expression in acute myeloid leukemia cells. Leukemia. 2009;23(6):1019-28.

https://doi.org/10.1038/leu.2008.397

PMid:19194470

Lyko F, Brown R. DNA methyltransferase inhibitors and the development of epigenetic cancer therapies. J Natl Cancer Inst. 2005;97(20):1498-506.

https://doi.org/10.1093/jnci/dji311

PMid:16234563

Sanaei M, Kavoosi F. Effect of 5-Aza-2'-Deoxycytidine in Comparison to Valproic Acid and Trichostatin A on Histone Deacetylase 1, DNA Methyltransferase 1, and CIP/KIP Family (p21, p27, and p57) Genes Expression, Cell Growth Inhibition, and Apoptosis Induction in Colon Cancer SW480 Cell Line. Adv Biomed Res. 2019;8:52.

https://doi.org/10.4103/abr.abr_91_19

PMid:31516890 PMCid:PMC6712896

Sanaei M, Kavoosi F, Esmi Z. The Effect of 5-Aza-2'-Deoxycytidine in Combination to and in Comparison with Vorinostat on DNA Methyltransferases, Histone Deacetylase 1, Glutathione S-Transferase 1 and Suppressor of Cytokine Signaling 1 Genes Expression, Cell Growth Inhibition and Apoptotic Induction in Hepatocellular LCL-PI 11 Cell Line. Int J Hematol Oncol Stem Cell Res. 2020;14(1):45-55.

https://doi.org/10.18502/ijhoscr.v14i1.2360

PMid:32337014 PMCid:PMC7167604

Sanaei M, Kavoosi F, Ghasemi A. Investigation of the Effect of 5-Aza-2'-Deoxycytidine on p15INK4, p16INK4, p18INK4, and p19INK4 Genes Expression, Cell Growth Inhibition, and Apoptosis Induction in Hepatocellular Carcinoma PLC/PRF/5 Cell Line. Adv Biomed Res. 2020;9:33.

https://doi.org/10.4103/abr.abr_68_20

PMid:33072645 PMCid:PMC7532824

Tan W, Zhou W, Yu HG, Luo HS, Shen L. The DNA methyltransferase inhibitor zebularine induces mitochondria-mediated apoptosis in gastric cancer cells in vitro and in vivo. Biochem Biophys Res Commun. 2013;430(1):250-5.

https://doi.org/10.1016/j.bbrc.2012.10.143

PMid:23167995

Shin DY, Sung Kang H, Kim GY, Kim WJ, Yoo YH, Choi YH. Decitabine, a DNA methyltransferases inhibitor, induces cell cycle arrest at G2/M phase through p53-independent pathway in human cancer cells. Biomed Pharmacother. 2013;67(4):305-11.

https://doi.org/10.1016/j.biopha.2013.01.004

PMid:23582784

Yang PM, Lin YT, Shun CT, Lin SH, Wei TT, Chuang SH, Wu MS, Chen CC. Zebularine inhibits tumorigenesis and stemness of colorectal cancer via p53-dependent endoplasmic reticulum stress. Sci Rep. 2013;3:3219.

https://doi.org/10.1038/srep03219

PMid:24225777 PMCid:PMC3827606

Sanaei M, Kavoosi F, Roustazadeh A, Shahsavani H. In Vitro Effect of the Histone Deacetylase Inhibitor Valproic Acid on Viability and Apoptosis of the PLC/PRF5 Human Hepatocellular Carcinoma Cell Line. Asian Pac J Cancer Prev. 2018;19(9):2507-10.

Sanaei M, Kavoosi F. Effect of curcumin and trichostatin a on the expression of DNA methyltransfrase 1 in hepatocellular carcinoma cell line hepa 1-6. Iran J Ped Hematol Oncol. 2018;8(4):193-201.

Sanaei M, Kavoosi F *, Behjoo H. Effect of valproic acid and zebularine on SOCS-1 and SOCS-3 gene expression in colon carcinoma SW48 cell line. Exp Oncol. 2020;42(3):183-7.

https://doi.org/10.32471/exp-oncology.2312-8852.vol-42-no-3.15113

Sanaei M, Kavoosi F, Mohammadi M, Khanezad M. Effect of 5-aza-2′-deoxycytidine on p16INK4a, p14ARF, p15INK4b Genes Expression, Cell Viability, and Apoptosis in PLC/PRF5 and MIA Paca-2 Cell Lines. Iran J Ped Hematol Oncol. 2019;9(4):219-28.

https://doi.org/10.18502/ijpho.v9i4.1570

Sanaei M, Kavoosi F, Salehi H. Genistein and Trichostatin A Induction of Estrogen Receptor Alpha Gene Expression, Apoptosis and Cell Growth Inhibition in Hepatocellular Carcinoma HepG 2 Cells. Asian Pac J Cancer Prev. 2017;18(12):3445-50.

Sanaei M, Kavoosi F, Pourahmadi M, Moosavi SN. Effect of Genistein and 17-β Estradiol on the Viability and Apoptosis of Human Hepatocellular Carcinoma HepG2 cell line. Adv Biomed Res. 2017;6:163.

https://doi.org/10.4103/abr.abr_53_17

PMid:29387674 PMCid:PMC5767799

Cao XX, Mohuiddin I, Chada S, Mhashilkar AM, Ozvaran MK, McConkey DJ, Miller SD, Daniel JC, Smythe WR. Adenoviral transfer of mda-7 leads to BAX up-regulation and apoptosis in mesothelioma cells, and is abrogated by over-expression of BCL-XL. Mol Med. 2002;8(12):869-76.

https://doi.org/10.1007/BF03402093

PMid:12606823 PMCid:PMC2039963

Ierano C, Chakraborty AR, Nicolae A, Bahr JC, Zhan Z, Pittaluga S, Bates SE, Robey RW. Loss of the proteins Bak and Bax prevents apoptosis mediated by histone deacetylase inhibitors. Cell Cycle. 2013;12(17):2829-38.

https://doi.org/10.4161/cc.25914

PMid:23966164 PMCid:PMC3899196

Ashur-Fabian O, Adamsky K, Trakhtenbrot L, Cohen Y, Raanani P, Hardan I, et al. Apaf1 in chronic myelogenous leukemia (CML) progression: reduced Apaf1 expression is correlated with a H179R p53 mutation during clinical blast crisis. Cell Cycle. 2007;6(5):589-94.

https://doi.org/10.4161/cc.6.5.3900

PMid:17361096

Xu Y, Liu L, Qiu X, Liu Z, Li H, Li Z, Luo W, Wang E. CCL21/CCR7 prevents apoptosis via the ERK pathway in human non-small cell lung cancer cells. PLoS One 2012;7(3) ):e33262.

https://doi.org/10.1371/journal.pone.0033262

PMid:22438908 PMCid:PMC3306387

Zhang YL, Pang LQ, Wu Y, Wang XY, Wang CQ, Fan Y. Significance of Bcl-xL in human colon carcinoma. World J Gastroenterol. 2008;14(19):3069-73.

https://doi.org/10.3748/wjg.14.3069

PMid:18494061 PMCid:PMC2712177

Chen YX, Fang JY, Zhu HY, Lu R, Cheng ZH, Qiu DK. Histone acetylation regulates p21WAF1 expression in human colon cancer cell lines. World J Gastroenterol. 2004;10(18):2643-6.

https://doi.org/10.3748/wjg.v10.i18.2643

PMid:15309711 PMCid:PMC4572185

Mitupatum T, Aree K, Kittisenachai S, Roytrakul S, Puthong S, Kangsadalampai S, Rojpibulstit P. mRNA Expression of Bax, Bcl-2, p53, Cathepsin B, Caspase-3 and Caspase-9 in the HepG2 Cell Line Following Induction by a Novel Monoclonal Ab Hep88 mAb: Cross-Talk for Paraptosis and Apoptosis. Asian Pac J Cancer Prev. 2016;17(2):703-12.

https://doi.org/10.7314/APJCP.2016.17.2.703

PMid:26925667

Wu S, Ge Y, Huang L, Liu H, Xue Y, Zhao Y. BRG1, the ATPase subunit of SWI/SNF chromatin remodeling complex, interacts with HDAC2 to modulate telomerase expression in human cancer cells. Cell Cycle. 2014;13(18):2869-78.

https://doi.org/10.4161/15384101.2014.946834

PMid:25486475 PMCid:PMC4612678

Ouyang L, Shi Z, Zhao S, Wang FT, Zhou TT, Liu B, et al. Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif. 2012;45(6):487-98.

https://doi.org/10.1111/j.1365-2184.2012.00845.x

PMid:23030059 PMCid:PMC6496669

Inoue S, Riley J, Gant TW, Dyer MJ, Cohen GM. Apoptosis induced by histone deacetylase inhibitors in leukemic cells is mediated by Bim and Noxa. Leukemia. 2007;21(8):1773-82.

https://doi.org/10.1038/sj.leu.2404760

PMid:17525724

Tsao T, Shi Y, Kornblau S, Lu H, Konoplev S, Antony A, et al. Concomitant inhibition of DNA methyltransferase and BCL-2 protein function synergistically induce mitochondrial apoptosis in acute myelogenous leukemia cells. Ann Hematol. 2012;91(12):1861-70.

https://doi.org/10.1007/s00277-012-1537-8

PMid:22893484 PMCid:PMC3750747

Natoni F, Diolordi L, Santoni C, Gilardini Montani MS. Sodium butyrate sensitises human pancreatic cancer cells to both the intrinsic and the extrinsic apoptotic pathways. Biochim Biophys Acta. 2005;1745(3):318-29.

https://doi.org/10.1016/j.bbamcr.2005.07.003

PMid:16109447

Wang L, Luo HS, Xia H. Sodium butyrate induces human colon carcinoma HT-29 cell apoptosis through a mitochondrial pathway. J Int Med Res. 2009;37(3):803-11.

https://doi.org/10.1177/147323000903700323

PMid:19589263

Pajak B, Gajkowska B, Orzechowski A. Sodium butyrate sensitizes human colon adenocarcinoma COLO 205 cells to both intrinsic and TNF-alpha-dependent extrinsic apoptosis. Apoptosis. 2009;14(2):203-17.

https://doi.org/10.1007/s10495-008-0291-9

PMid:19130237

Wei ZL, Zhao QL, Yu DY, Hassan MA, Nomura T, Kondo T. Enhancement of sodium butyrate-induced cell death and apoptosis by X-irradiation in the human colorectal cancer cell line HCT 116. Oncol Rep. 2008;20(2):397-403.

Wang J, Xie Ya, Feng Y, Zhang L, Huang X, Shen X, et al. (-)-Epigallocatechingallate induces apoptosis in B lymphoma cells via caspase-dependent pathway and Bcl-2 family protein modulation. Int J Oncol. 2015;46(4):1507-15.

https://doi.org/10.3892/ijo.2015.2869

PMid:25647297 PMCid:PMC4356505

Lee J-H, Jeong Y-J, Lee S-W, Kim D, Oh S-J, Lim H-S, et al. EGCG induces apoptosis in human laryngeal epidermoid carcinoma Hep2 cells via mitochondria with the release of apoptosis-inducing factor and endonuclease G. Cancer lett. 2010;290(1):68-75.

https://doi.org/10.1016/j.canlet.2009.08.027

PMid:19781850

Manna S, Banerjee S, Mukherjee S, Das S, Panda CK. Epigallocatechin gallate induced apoptosis in Sarcoma180 cells in vivo: mediated by p53 pathway and inhibition in U1B, U4-U6 UsnRNAs expression. Apoptosis. 2006;11(12):2267.

https://doi.org/10.1007/s10495-006-0198-2

PMid:17041754

Sonnemann J, Marx C, Becker S, Wittig S, Palani C, Krämer O, et al. p53-dependent and p53-independent anticancer effects of different histone deacetylase inhibitors. Br J Cancer. 2014;110(3):656-67.

https://doi.org/10.1038/bjc.2013.742

PMid:24281001 PMCid:PMC3915118

Schneider-Stock R, Diab-Assef M, Rohrbeck A, Foltzer-Jourdainne C, Boltze C, Hartig R, et al. RETRACTION: 5-aza-Cytidine is a potent inhibitor of DNA methyltransferase 3a and induces apoptosis in HCT-116 colon cancer cells via Gadd45-and p53-dependent mechanisms. J Pharmacol Exp Ther. 2005;312(2):525-36.

https://doi.org/10.1124/jpet.104.074195

PMid:15547111

Shin DY, Kang HS, Kim G-Y, Kim W-J, Yoo YH, Choi YH. Decitabine, a DNA methyltransferases inhibitor, induces cell cycle arrest at G2/M phase through p53-independent pathway in human cancer cells. Biomed Pharmacother. 2013;67(4):305-11.

https://doi.org/10.1016/j.biopha.2013.01.004

PMid:23582784

Published
2022-10-18
How to Cite
Sanaei, M., Kavoosi, F., & Poursadgh Soufiani, I. (2022). Effect of Sodium Butyrate and Epigallocatechin-3-Gallate on the Genes Expression of Intrinsic Apoptotic Pathway on PA-TU-8902, CFPAC-1, and CAPAN-1 Human Pancreatic Cancer Cell Lines. Galen Medical Journal, 11, e2248. https://doi.org/10.31661/gmj.v11i.2248