Neuropharmaceutical Properties of Naringin Against Alzheimer's and Parkinson's Diseases
Abstract
Neurological complications are considered the leading cause of disability and the second cause of death worldwide. Although the most common neurological disorders affecting a large population are Alzheimer's (AD) and Parkinson's diseases (PD), no definitive treatment has been propounded in the clinic. As in recent years, special attention has been paid to medicinal herbal products as one of the ways to meet the challenges of treating diseases. This review study aimed to introduce the naringin neuroprotective effects as an abundant flavonoid in grapes and citrus fruits on the most common neurological disorders, including AD and PD. For this purpose, the specified keywords were searched in PubMed, Web of Science, Scopus, Embase, and Google Scholar, and the results were entered into the study after a concise overview. The findings show naringin can confront neurological disorders through several mechanisms such as modulating stress response pathways, preventing apoptosis, oxidative stress, and neuroinflammation, excessive chelating amounts of metal ions, thereby improving cognitive impairment and memory loss induced by neurological disorders. However, further studies, particularly on human, are critical for the final confirmation of obtained findings.References
Feigin VL, Nichols E, Alam T, Bannick MS, Beghi E, Blake N, et al. Global, regional, and national burden of neurological disorders, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18(5):459-80.
https://doi.org/10.1016/S1474-4422(18)30499-X
Deverman BE, Ravina BM, Bankiewicz KS, Paul SM, Sah DWY. Gene therapy for neurological disorders: progress and prospects. Nat Rev Drug Discov. 2018;17(9):641-59.
https://doi.org/10.1038/nrd.2018.110
PMid:30093643
Espay AJ, Aybek S, Carson A, Edwards MJ, Goldstein LH, Hallett M, et al. Current Concepts in Diagnosis and Treatment of Functional Neurological Disorders. JAMA Neurol. 2018;75(9):1132-41.
https://doi.org/10.1001/jamaneurol.2018.1264
PMid:29868890 PMCid:PMC7293766
Lee J, Jin C, Cho SY, Park SU, Jung WS, Moon SK, Park JM, Ko CN, Cho KH, Kwon S. Herbal medicine treatment for Alzheimer disease: A protocol for a systematic review and meta-analysis. Medicine (Baltimore). 2020;99(33):e21745.
https://doi.org/10.1097/MD.0000000000021745
PMid:32872063 PMCid:PMC7437827
Liang YT, Lin CY, Wang YH, Chou HH, Wei JC. Associations of Chinese Herbal Medicine Usage with Risk of Dementia in Patients with Parkinson's Disease: A Population-Based, Nested Case-Control Study. J Altern Complement Med. 2021;27(7):606-12.
https://doi.org/10.1089/acm.2020.0422
PMid:33979532
Memariani Z, Abbas SQ, Ul Hassan SS, Ahmadi A, Chabra A. Naringin and naringenin as anticancer agents and adjuvants in cancer combination therapy: Efficacy and molecular mechanisms of action, a comprehensive narrative review. Pharmacol Res. 2021;171:105264.
https://doi.org/10.1016/j.phrs.2020.105264
PMid:33166734
Samare-Najaf M, Samareh A, Jamali N, Abbasi A, Clark CC, Khorchani MJ, Zal F. Adverse Effects and Safety of Etirinotecan Pegol, a Novel Topoisomerase Inhibitor, in Cancer Treatment: A Systematic Review. Curr Cancer Ther Rev. 2021;17(3):234-43.
https://doi.org/10.2174/1573394717666210202103502
Samare-Najaf M, Zal F, Safari S, Koohpeyma F, Jamali N. Stereological and histopathological evaluation of doxorubicin-induced toxicity in female rats' ovary and uterus and palliative effects of quercetin and vitamin E. Hum Exp Toxicol. 2020;39(12):1710-24.
https://doi.org/10.1177/0960327120937329
PMid:32666839
Rostami S, Azhdarpoor A, Baghapour MA, Dehghani M, Samaei MR, Jaskulak M, et al. The effects of exogenous application of melatonin on the degradation of polycyclic aromatic hydrocarbons in the rhizosphere of Festuca. Environ Pollut. 2021;274:116559.
https://doi.org/10.1016/j.envpol.2021.116559
PMid:33529892
Jamali N, Zal F, Mostafavi-Pour Z, Samare-Najaf M, Poordast T, Dehghanian A. Ameliorative Effects of Quercetin and Metformin and Their Combination Against Experimental Endometriosis in Rats. Reprod Sci. 2021;28(3):683-92.
https://doi.org/10.1007/s43032-020-00377-2
PMid:33141412
Samare-Najaf M, Zal F, Safari S. Primary and Secondary Markers of Doxorubicin-Induced Female Infertility and the Alleviative Properties of Quercetin and Vitamin E in a Rat Model. Reprod Toxicol. 2020 S;96:316-26.
https://doi.org/10.1016/j.reprotox.2020.07.015
PMid:32810592
Jamali N, Jalali M, Saffari-Chaleshtori J, Samare-Najaf M, Samareh A. Effect of cinnamon supplementation on blood pressure and anthropometric parameters in patients with type 2 diabetes: A systematic review and meta-analysis of clinical trials. Diabetes Metab Syndr. 2020;14(2):119-25.
https://doi.org/10.1016/j.dsx.2020.01.009
PMid:32032898
Jamali N, Kazemi A, Saffari-Chaleshtori J, Samare-Najaf M, Mohammadi V, Clark CCT. The effect of cinnamon supplementation on lipid profiles in patients with type 2 diabetes: A systematic review and meta-analysis of clinical trials. Complement Ther Med. 2020;55:102571.
https://doi.org/10.1016/j.ctim.2020.102571
PMid:33220625
Li S, Jiang J, Fang J, Li X, Huang C, Liang W, Wu K. Naringin protects H9C2 cardiomyocytes from chemical hypoxia induced injury by promoting the autophagic flux via the activation of the HIF 1α/BNIP3 signaling pathway. Int J Mol Med. 2021;47(6):102.
https://doi.org/10.3892/ijmm.2021.4935
PMid:33907819
Jamali N, Soureshjani EH, Mobini GR, Samare-Najaf M, Clark CCT, Saffari-Chaleshtori J. Medicinal plant compounds as promising inhibitors of coronavirus (COVID-19) main protease: an in silico study. J Biomol Struct Dyn. 2021:1-12.
https://doi.org/10.1080/07391102.2021.1906749
PMid:33970805
Benameur T, Soleti R, Porro C. The Potential Neuroprotective Role of Free and Encapsulated Quercetin Mediated by miRNA against Neurological Diseases. Nutrients. 2021;13(4):1318.
https://doi.org/10.3390/nu13041318
PMid:33923599 PMCid:PMC8073422
Aihaiti Y, Song Cai Y, Tuerhong X, Ni Yang Y, Ma Y, Shi Zheng H, Xu K, Xu P. Therapeutic Effects of Naringin in Rheumatoid Arthritis: Network Pharmacology and Experimental Validation. Front Pharmacol. 2021;12:672054.
https://doi.org/10.3389/fphar.2021.672054
PMid:34054546 PMCid:PMC8160516
Benavente-García O, Castillo J. Update on uses and properties of citrus flavonoids: new findings in anticancer, cardiovascular, and anti-inflammatory activity. J Agric Food Chem. 2008;56(15):6185-205.
https://doi.org/10.1021/jf8006568
PMid:18593176
Yonekura-Sakakibara K, Higashi Y, Nakabayashi R. The Origin and Evolution of Plant Flavonoid Metabolism. Front Plant Sci. 2019;10:943.
https://doi.org/10.3389/fpls.2019.00943
PMid:31428108 PMCid:PMC6688129
Cavia-Saiz M, Busto MD, Pilar-Izquierdo MC, Ortega N, Perez-Mateos M, Muñiz P. Antioxidant properties, radical scavenging activity and biomolecule protection capacity of flavonoid naringenin and its glycoside naringin: a comparative study. J Sci Food Agric. 2010;90(7):1238-44.
https://doi.org/10.1002/jsfa.3959
PMid:20394007
Jucá MM, Cysne Filho FMS, De Almeida JC, Mesquita DDS, Barriga JRM, Dias KCF, et al. Flavonoids: biological activities and therapeutic potential. Nat Prod Res. 2020;34(5):692-705.
https://doi.org/10.1080/14786419.2018.1493588
PMid:30445839
Chen YC, Shen SC, Lin HY. Rutinoside at C7 attenuates the apoptosis-inducing activity of flavonoids. Biochem Pharmacol. 2003;66(7):1139-50.
https://doi.org/10.1016/S0006-2952(03)00455-6
Chen R, Qi QL, Wang MT, Li QY. Therapeutic potential of naringin: an overview. Pharm Biol. 2016;54(12):3203-10.
https://doi.org/10.1080/13880209.2016.1216131
PMid:27564838
Lather A, Sharma S, Khatkar A. Naringin derivatives as glucosamine-6-phosphate synthase inhibitors based preservatives and their biological evaluation. Sci Rep. 2020;10(1):20477.
https://doi.org/10.1038/s41598-020-77511-2
PMid:33235242 PMCid:PMC7686335
Şekeroğlu G, Fadıloğlu S, Göğüş F. Immobilization and characterization of naringinase for the hydrolysis of naringin. Eur Food Res Technol. 2006;224(1):55-60.
https://doi.org/10.1007/s00217-006-0288-y
Wang J, Ye X, Lin S, Liu H, Qiang Y, Chen H, Jiang Z, et al. Preparation, characterization and in vitro and in vivo evaluation of a solid dispersion of Naringin. Drug Dev Ind Pharm. 2018;44(11):1725-32.
https://doi.org/10.1080/03639045.2018.1483390
PMid:29851514
Gelen V, Şengül E. Antioxidant, anti-inflammatory and antiapoptotic effects of Naringin on cardiac damage induced by cisplatin. Indian J Tradit Know. 2020;19(2):459-65.
https://doi.org/10.56042/ijtk.v19i2.35371
Hussain K, Ali I, Ullah S, Imran M, Parveen S, Kanwal T, et al. Enhanced antibacterial potential of naringin loaded β cyclodextrin nanoparticles. J Clust Sci. 2022;33(1):339-48.
https://doi.org/10.1007/s10876-020-01972-8
Li P, Wang S, Guan X, Cen X, Hu C, Peng W, Wang Y, Su W. Six months chronic toxicological evaluation of naringin in Sprague-Dawley rats. Food Chem Toxicol. 2014;66:65-75.
https://doi.org/10.1016/j.fct.2014.01.023
PMid:24462649
Akamo AJ, Rotimi SO, Akinloye DI, Ugbaja RN, Adeleye OO, Dosumu OA, et al. Naringin prevents cyclophosphamide-induced hepatotoxicity in rats by attenuating oxidative stress, fibrosis, and inflammation. Food Chem Toxicol. 2021;153:112266.
https://doi.org/10.1016/j.fct.2021.112266
PMid:33992719
Ge X, Zhou G. Protective effects of naringin on glucocorticoid-induced osteoporosis through regulating the PI3K/Akt/mTOR signaling pathway. Am J Transl Res. 2021;13(6):6330-41.
Syed AA, Reza MI, Shafiq M, Kumariya S, Singh P, Husain A, et al. Naringin ameliorates type 2 diabetes mellitus-induced steatohepatitis by inhibiting RAGE/NF-κB mediated mitochondrial apoptosis. Life Sci. 2020;257:118118.
https://doi.org/10.1016/j.lfs.2020.118118
PMid:32702445
Zhao Y, Liu S. Bioactivity of naringin and related mechanisms. Pharmazie. 2021;76(8):359-63.
Lutz MW, Sprague D, Barrera J, Chiba-Falek O. Shared genetic etiology underlying Alzheimer's disease and major depressive disorder. Transl Psychiatry. 2020;10(1):88.
https://doi.org/10.1038/s41398-020-0769-y
PMid:32152295 PMCid:PMC7062839
Sachdeva AK, Kuhad A, Chopra K. Naringin ameliorates memory deficits in experimental paradigm of Alzheimer's disease by attenuating mitochondrial dysfunction. Pharmacol Biochem Behav. 2014;127:101-10.
https://doi.org/10.1016/j.pbb.2014.11.002
PMid:25449356
Thomas GEC, Leyland LA, Schrag AE, Lees AJ, Acosta-Cabronero J, Weil RS. Brain iron deposition is linked with cognitive severity in Parkinson's disease. J Neurol Neurosurg Psychiatry. 2020;91(4):418-25.
https://doi.org/10.1136/jnnp-2019-322042
PMid:32079673 PMCid:PMC7147185
Wang DM, Yang YJ, Zhang L, Zhang X, Guan FF, Zhang LF. Naringin Enhances CaMKII Activity and Improves Long-Term Memory in a Mouse Model of Alzheimer's Disease. Int J Mol Sci. 2013;14(3):5576-86.
https://doi.org/10.3390/ijms14035576
PMid:23478434 PMCid:PMC3634479
Kumar A, Dogra S, Prakash A. Protective effect of naringin, a citrus flavonoid, against colchicine-induced cognitive dysfunction and oxidative damage in rats. J Med Food. 2010;13(4):976-84.
https://doi.org/10.1089/jmf.2009.1251
PMid:20673063
Prabhakar O. Naringin Attenuates Aluminum Induced Cognitive Deficits in Rats. Indian J Pharm Educ Res. 2020;54:674-81.
https://doi.org/10.5530/ijper.54.3.117
Ramalingayya GV, Nampoothiri M, Nayak PG, Kishore A, Shenoy RR, Mallikarjuna Rao C, Nandakumar K. Naringin and Rutin Alleviates Episodic Memory Deficits in Two Differentially Challenged Object Recognition Tasks. Pharmacogn Mag. 2016;12(Suppl 1):S63-70.
https://doi.org/10.4103/0973-1296.176104
PMid:27041861 PMCid:PMC4792002
Wu BW, Guo JD, Wu MS, Liu Y, Lu M, Zhou YH, Han HW. Osteoblast-derived lipocalin-2 regulated by miRNA-96-5p/Foxo1 advances the progression of Alzheimer's disease. Epigenomics. 2020;12(17):1501-13.
https://doi.org/10.2217/epi-2019-0215
PMid:32901506
Kaur G, Prakash A. Involvement of the nitric oxide signaling in modulation of naringin against intranasal manganese and intracerbroventricular β-amyloid induced neurotoxicity in rats. J Nutr Biochem. 2020;76:108255.
https://doi.org/10.1016/j.jnutbio.2019.108255
PMid:31759198
Kumar A, Prakash A, Dogra S. Naringin alleviates cognitive impairment, mitochondrial dysfunction and oxidative stress induced by D-galactose in mice. Food Chem Toxicol. 2010;48(2):626-32.
https://doi.org/10.1016/j.fct.2009.11.043
PMid:19941926
Sachdeva AK, Chopra K. Naringin mitigate okadaic acid-induced cognitive impairment in an experimental paradigm of Alzheimer's disease. J Funct Foods. 2015;19:110-25.
https://doi.org/10.1016/j.jff.2015.08.024
Wang D, Gao K, Li X, Shen X, Zhang X, Ma C, Qin C, Zhang L. Long-term naringin consumption reverses a glucose uptake defect and improves cognitive deficits in a mouse model of Alzheimer's disease. Pharmacol Biochem Behav. 2012;102(1):13-20.
https://doi.org/10.1016/j.pbb.2012.03.013
PMid:22741174
Wang DM, Yang YJ, Zhang L, Zhang X, Guan FF, Zhang LF. Naringin Enhances CaMKII Activity and Improves Long-Term Memory in a Mouse Model of Alzheimer's Disease. Int J Mol Sci. 2013;14(3):5576-86.
https://doi.org/10.3390/ijms14035576
PMid:23478434 PMCid:PMC3634479
Yang W, Zhou K, Zhou Y, An Y, Hu T, Lu J, Huang S, Pei G. Naringin Dihydrochalcone Ameliorates Cognitive Deficits and Neuropathology in APP/PS1 Transgenic Mice. Front Aging Neurosci. 2018;10:169.
https://doi.org/10.3389/fnagi.2018.00169
PMid:29922152 PMCid:PMC5996202
Meng X, Fu M, Wang S, Chen W, Wang J, Zhang N. Naringin ameliorates memory deficits and exerts neuroprotective effects in a mouse model of Alzheimer's disease by regulating multiple metabolic pathways. Mol Med Rep. 2021;23(5):332.
https://doi.org/10.3892/mmr.2021.11971
PMid:33760152 PMCid:PMC7974313
Estevez AO, Morgan KL, Szewczyk NJ, Gems D, Estevez M. The neurodegenerative effects of selenium are inhibited by FOXO and PINK1/PTEN regulation of insulin/insulin-like growth factor signaling in Caenorhabditis elegans. Neurotoxicology. 2014;41(100):28-43.
https://doi.org/10.1016/j.neuro.2013.12.012
PMid:24406377 PMCid:PMC3979119
Zhao Y, Yang J, Liao W, Liu X, Zhang H, Wang S, Wang D, Feng J, Yu L, Zhu WG. Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity. Nat Cell Biol. 2010;12(7):665-75.
https://doi.org/10.1038/ncb2069
PMid:20543840
Jiang X, Niu X, Guo Q, Dong Y, Xu J, Yin N, et al. FoxO1-mediated autophagy plays an important role in the neuroprotective effects of hydrogen in a rat model of vascular dementia. Behav Brain Res. 2019;356:98-106.
https://doi.org/10.1016/j.bbr.2018.05.023
PMid:29885845
Kimura A, Hata S, Suzuki T. Alternative Selection of β-Site APP-Cleaving Enzyme 1 (BACE1) Cleavage Sites in Amyloid β-Protein Precursor (APP) Harboring Protective and Pathogenic Mutations within the Aβ Sequence. J Biol Chem. 2016;291(46):24041-53.
https://doi.org/10.1074/jbc.M116.744722
PMid:27687728 PMCid:PMC5104930
Hampel H, Blennow K, Shaw LM, Hoessler YC, Zetterberg H, Trojanowski JQ. Total and phosphorylated tau protein as biological markers of Alzheimer's disease. Exp Gerontol. 2010;45(1):30-40.
https://doi.org/10.1016/j.exger.2009.10.010
PMid:19853650 PMCid:PMC2815003
Saito T, Oba T, Shimizu S, Asada A, Iijima KM, Ando K. Cdk5 increases MARK4 activity and augments pathological tau accumulation and toxicity through tau phosphorylation at Ser262. Hum Mol Genet. 2019;28(18):3062-71.
https://doi.org/10.1093/hmg/ddz120
PMid:31174206
Rabbito A, Dulewicz M, Kulczyńska-Przybik A, Mroczko B. Biochemical Markers in Alzheimer's Disease. Int J Mol Sci. 2020;21(6):1989.
https://doi.org/10.3390/ijms21061989
PMid:32183332 PMCid:PMC7139967
Ben-Shushan S, Miller Y. Neuropeptides: Roles and Activities as Metal Chelators in Neurodegenerative Diseases. J Phys Chem B. 2021;125(11):2796-811.
https://doi.org/10.1021/acs.jpcb.0c11151
PMid:33570949 PMCid:PMC8389909
Ferreira-Vieira TH, Guimaraes IM, Silva FR, Ribeiro FM. Alzheimer's disease: Targeting the Cholinergic System. Curr Neuropharmacol. 2016;14(1):101-15.
https://doi.org/10.2174/1570159X13666150716165726
PMid:26813123 PMCid:PMC4787279
Ahmad SS, Akhtar S, Jamal QM, Rizvi SM, Kamal MA, Khan MK, Siddiqui MH. Multiple Targets for the Management of Alzheimer's Disease. CNS Neurol Disord Drug Targets. 2016;15(10):1279-89.
https://doi.org/10.2174/1871527315666161003165855
PMid:27712576
Liu MY, Zeng F, Shen Y, Wang YY, Zhang N, Geng F. Bioguided Isolation and Structure Identification of Acetylcholinesterase Enzyme Inhibitors from Drynariae Rhizome. J Anal Methods Chem. 2020;2020:2971841.
https://doi.org/10.1155/2020/2971841
PMid:32185082 PMCid:PMC7059089
Mani VM, Asha S, Sadiq AM. Pyrethroid deltamethrin-induced developmental neurodegenerative cerebral injury and ameliorating effect of dietary glycoside naringin in male wistar rats. Biomed Aging Pathol. 2014;4(1):1-8.
https://doi.org/10.1016/j.biomag.2013.11.001
Orhan I, Kartal M, Tosun F, Sener B. Screening of various phenolic acids and flavonoid derivatives for their anticholinesterase potential. Z Naturforsch C J Biosci. 2007;62(11-12):829-32.
https://doi.org/10.1515/znc-2007-11-1210
PMid:18274286
Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, Jacobs AH, Wyss-Coray T, Vitorica J, Ransohoff RM, Herrup K. Neuroinflammation in Alzheimer's disease. Lancet Neurol. 2015;14(4):388-405.
https://doi.org/10.1016/S1474-4422(15)70016-5
McGeer EG, McGeer PL. Inflammatory processes in Alzheimer's disease. Prog Neuropsychopharmacol Biol Psychiatry. 2003;27(5):741-9.
https://doi.org/10.1016/S0278-5846(03)00124-6
Burke RE, O'Malley K. Axon degeneration in Parkinson's disease. Exp Neurol. 2013;246:72-83.
https://doi.org/10.1016/j.expneurol.2012.01.011
PMid:22285449 PMCid:PMC3340476
Geibl FF, Henrich MT, Oertel WH. Mesencephalic and extramesencephalic dopaminergic systems in Parkinson's disease. J Neural Transm (Vienna). 2019;126(4):377-96.
https://doi.org/10.1007/s00702-019-01970-9
PMid:30643975
Darbinyan LV, Hambardzumyan LE, Simonyan KV, Chavushyan VA, Manukyan LP, Badalyan SA, et al. Protective effects of curcumin against rotenone-induced rat model of Parkinson's disease: in vivo electrophysiological and behavioral study. Metab Brain Dis. 2017;32(6):1791-803.
https://doi.org/10.1007/s11011-017-0060-y
PMid:28695411
Islam MS, Quispe C, Hossain R, Islam MT, Al-Harrasi A, Al-Rawahi A, Martorell M, Mamurova A, Seilkhan A, Altybaeva N, Abdullayeva B, Docea AO, Calina D, Sharifi-Rad J. Neuropharmacological Effects of Quercetin: A Literature-Based Review. Front Pharmacol. 2021;12:665031.
https://doi.org/10.3389/fphar.2021.665031
PMid:34220504 PMCid:PMC8248808
Prasad EM, Hung SY. Behavioral Tests in Neurotoxin-Induced Animal Models of Parkinson's Disease. Antioxidants (Basel). 2020;9(10):1007.
https://doi.org/10.3390/antiox9101007
PMid:33081318 PMCid:PMC7602991
Su CF, Jiang L, Zhang XW, Iyaswamy A, Li M. Resveratrol in Rodent Models of Parkinson's Disease: A Systematic Review of Experimental Studies. Front Pharmacol. 2021;12:644219.
https://doi.org/10.3389/fphar.2021.644219
PMid:33967780 PMCid:PMC8100515
Ay M, Luo J, Langley M, Jin H, Anantharam V, Kanthasamy A, et al. Molecular mechanisms underlying protective effects of quercetin against mitochondrial dysfunction and progressive dopaminergic neurodegeneration in cell culture and MitoPark transgenic mouse models of Parkinson's Disease. J Neurochem. 2017;141(5):766-82.
https://doi.org/10.1111/jnc.14033
PMid:28376279 PMCid:PMC5643047
Panneton WM, Kumar VB, Gan Q, Burke WJ, Galvin JE. The neurotoxicity of DOPAL: behavioral and stereological evidence for its role in Parkinson disease pathogenesis. PLoS One. 2010;5(12):e15251.
https://doi.org/10.1371/journal.pone.0015251
PMid:21179455 PMCid:PMC3001493
Rasheed MSU, Tripathi MK, Patel DK, Singh MP. Resveratrol Regulates Nrf2-Mediated Expression of Antioxidant and Xenobiotic Metabolizing Enzymes in Pesticides-Induced Parkinsonism. Protein Pept Lett. 2020;27(10):1038-45.
https://doi.org/10.2174/0929866527666200403110036
PMid:32242774
Sharma S, Raj K, Singh S. Neuroprotective Effect of Quercetin in Combination with Piperine Against Rotenone- and Iron Supplement-Induced Parkinson's Disease in Experimental Rats. Neurotox Res. 2020;37(1):198-209.
https://doi.org/10.1007/s12640-019-00120-z
PMid:31654381
Garabadu D, Agrawal N. Naringin Exhibits Neuroprotection Against Rotenone-Induced Neurotoxicity in Experimental Rodents. Neuromolecular Med. 2020;22(2):314-30.
https://doi.org/10.1007/s12017-019-08590-2
PMid:31916219
Medeiros-Linard CFB, Andrade-da-Costa BLDS, Augusto RL, Sereniki A, Trevisan MTS, Perreira RCR, et al. Anacardic Acids from Cashew Nuts Prevent Behavioral Changes and Oxidative Stress Induced by Rotenone in a Rat Model of Parkinson's Disease. Neurotox Res. 2018;34(2):250-62.
https://doi.org/10.1007/s12640-018-9882-6
PMid:29520721
Fouzder C, Mukhuty A, Mukherjee S, Malick C, Kundu R. Trigonelline inhibits Nrf2 via EGFR signalling pathway and augments efficacy of Cisplatin and Etoposide in NSCLC cells. Toxicol In Vitro. 202;70:105038.
https://doi.org/10.1016/j.tiv.2020.105038
PMid:33148531
Clerici S, Boletta A. Role of the KEAP1-NRF2 Axis in Renal Cell Carcinoma. Cancers (Basel). 2020;12(11):3458.
https://doi.org/10.3390/cancers12113458
PMid:33233657 PMCid:PMC7699726
Tao J, Krutsenko Y, Moghe A, Singh S, Poddar M, Bell A, et al. Nuclear factor erythroid 2-related factor 2 and β-Catenin Coactivation in Hepatocellular Cancer: Biological and Therapeutic Implications. Hepatology. 2021;74(2):741-59.
https://doi.org/10.1002/hep.31730
PMid:33529367 PMCid:PMC8326305
Kim HD, Jeong KH, Jung UJ, Kim SR. Naringin treatment induces neuroprotective effects in a mouse model of Parkinson's disease in vivo, but not enough to restore the lesioned dopaminergic system. J Nutr Biochem. 2016;28:140-6.
https://doi.org/10.1016/j.jnutbio.2015.10.013
PMid:26878791
Urrutia PJ, Mena NP, Núñez MT. The interplay between iron accumulation, mitochondrial dysfunction, and inflammation during the execution step of neurodegenerative disorders. Front Pharmacol. 2014;5:38.
https://doi.org/10.3389/fphar.2014.00038
PMid:24653700 PMCid:PMC3948003
Leem E, Nam JH, Jeon MT, Shin WH, Won SY, Park SJ, Choi MS, Jin BK, Jung UJ, Kim SR. Naringin protects the nigrostriatal dopaminergic projection through induction of GDNF in a neurotoxin model of Parkinson's disease. J Nutr Biochem. 2014;25(7):801-6.
https://doi.org/10.1016/j.jnutbio.2014.03.006
PMid:24797334
Gentile G, La Cognata V, Cavallaro S. The contribution of CNVs to the most common aging-related neurodegenerative diseases. Aging Clin Exp Res. 2021;33(5):1187-95.
https://doi.org/10.1007/s40520-020-01485-4
PMid:32026430
Zhu Q, Qu Y, Zhou XG, Chen JN, Luo HR, Wu GS. A Dihydroflavonoid Naringin Extends the Lifespan of C. elegans and Delays the Progression of Aging-Related Diseases in PD/AD Models via DAF-16. Oxid Med Cell Longev. 2020;2020:6069354.
https://doi.org/10.1155/2020/6069354
PMid:32832002 PMCid:PMC7422489

Copyright (c) 2022 Galen Medical Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).