Changes in Serum Alkaline Phosphatase, Calcium, and Parathyroid Hormone with Different Doses of Iodine Therapy

  • Mohammad Mehdi Movahedi Department of Medical Physics and Biomedical Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Ionizing and Non- Ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran
  • Gholam Reza Karimaghaei School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
  • Ahmad Noori Novin Iran Specialized Dermatology Clinic, Shiraz, Iran
  • Mohammad Atefi Ionizing and Non- Ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran; Tehran Science and Research Branch, Islamic Azad University, Tehran, Iran
  • Tahereh Mahmoudi Department of Medical Physics and Biomedical Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
  • Farshid Gheisari Ionizing and Non- Ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran; The Hospital for Sick Children, Toronto, Canada
Keywords: Nuclear Medicine, Thyroid Cancer, Radioactive Iodine, Alkaline Phosphatase, Serum Calcium, Parathyroid Hormone

Abstract

Background: Despite the benefits of radioactive iodine (RAI) therapy as an adjunctive treatment for thyroid cancer, it can be associated with several side effects. The main purpose of this study was to determine the changes in serum alkaline phosphatase (ALP), calcium (Ca), and parathyroid hormone (PTH) at different doses of RAI therapy among patients who were referred to the nuclear medicine department of Namazi Hospital, Shiraz. Materials and Methods: This cross-sectional study was conducted on 60 patients with papillary thyroid cancer who underwent RAI therapy at different doses of 100, 150, and 200 mCi. The ALP, Ca, and PTH levels of patients were measured before and 60 days after RAI therapy. Results: Our study revealed that RAI therapy at all doses significantly increased ALP level in comparison with baseline amounts (P≤0.05). However, changes in PTH and Ca levels were not significant among patients who received different doses of RAI (P˃0.05). Conclusion: RAI therapy could affect important hormones and enzymes such as ALP and PTH. This issue can be considered in diagnostic and therapeutic prescriptions of RAI for the treatment of thyroid cancer.

References

Lenzi M, Bassani G. The effect of radiation on the lymph and on the lymph vessels. Radiol. 1963;80(5):814-7.

https://doi.org/10.1148/80.5.814

PMid:13929675

Partington M, Craig AW, Jackson H. The effect of radiation on spermatogenic cells in the rat and mouse. Br J Radiol. 1962;35(418):713-8.

https://doi.org/10.1259/0007-1285-35-418-713

PMid:13941616

Kobayashi K, Usami N, Porcel E, Lacombe S, Le Sech C. Enhancement of radiation effect by heavy elements. Mutat Res. 2010;704(1-3):123-31.

https://doi.org/10.1016/j.mrrev.2010.01.002

PMid:20074660

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209-49.

https://doi.org/10.3322/caac.21660

PMid:33538338

Parkin DM. Global cancer statistics in the year 2000. Lancet Oncol. 2001;2(9):533-43.

https://doi.org/10.1016/S1470-2045(01)00486-7

Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7-33.

https://doi.org/10.3322/caac.21708

Sturgeon KM, Deng L, Bluethmann SM, Zhou S, Trifiletti DM, Jiang C, et al. A population-based study of cardiovascular disease mortality risk in US cancer patients. Eur Heart J. 2019;40(48):3889-97.

https://doi.org/10.1093/eurheartj/ehz766

PMid:31761945 PMCid:PMC6925383

Li LB, Wang JP, Yu XR, He SS, Yu FH, Ding CH. Medical radiation usage and exposures from medical X ray diagnosis in Shandong province of China. Radia Protect Dosi. 2001;93(3):261-6.

https://doi.org/10.1093/oxfordjournals.rpd.a006437

PMid:11548352

Creach KM, Siegel BA, Nussenbaum B, Grigsby PW. Radioactive iodine therapy decreases recurrence in thyroid papillary microcarcinoma. ISRN Endocrinol. 2012;2012:816386

https://doi.org/10.5402/2012/816386

PMid:22462017 PMCid:PMC3313572

Donya M, Radford M, ElGuindy A, Firmin D, Yacoub MH. Radiation in medicine: Origins, risks and aspirations. Glob Cardiol Sci Pract. 2014;2014(4):437-48

https://doi.org/10.5339/gcsp.2014.57

PMid:25780797 PMCid:PMC4355517

Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012;62(1):10-29.

https://doi.org/10.3322/caac.20138

PMid:22237781

Ahmad T, Khoja A, Rashid NH, Ashfaq MA. Outcome of radioactive iodine therapy in Toxic Nodular Goiter in Pakistan. Pak J Med Sci. 2018;34(5):1146-51

https://doi.org/10.12669/pjms.345.15244

PMid:30344566 PMCid:PMC6191791

La Perle KM, Kim DC, Hall NC, Bobbey A, Shen DH, Nagy RS, et al. Modulation of sodium/iodide symporter expression in the salivary gland. Thyroid. 2013;23(8):1029-36.

https://doi.org/10.1089/thy.2012.0571

PMid:23441638 PMCid:PMC3752512

Petrich T, Widjaja A, Musholt TJ, Hofmann M, Brunkhorst T, Ehrenheim C, et al. Outcome after radioiodine therapy in 107 patients with differentiated thyroid carcinoma and initial bone metastases: side-effects and influence of age. Europ J Nucl Med. 2001;28(2):203-8.

https://doi.org/10.1007/s002590000420

PMid:11303891

O'connor MK. The Mayo Clinic Manual of Nuclear Medicine. New York: Churchill Livingstone; 1996.

Frans JT, Berman DS, Maddahi J, Watson DD, Beller GA, Strauss HW, et al. Technetium-99m hexakis 2-methoxyisobutyl isonitrile: human biodistribution, dosimetry, safety, and preliminary comparison to thallium-201 for myocardial perfusion imaging. J Nucl Med. 1989;30(3):301-11.

Wang S, Liang C, Zhao L, Meng Z, Zhang C, Jia Q, et al. Influence of radioactive iodine therapy on liver function in patients with differentiated thyroid cancer. Nucl Med Commun. 2018;39(12):1113-20.

https://doi.org/10.1097/MNM.0000000000000919

PMid:30247387

Fard-Esfahani A, Emami-Ardekani A, Fallahi B, Fard-Esfahani P, Beiki D, Hassanzadeh-Rad A, Eftekhari M. Adverse effects of radioactive iodine-131 treatment for differentiated thyroid carcinoma. Nucl Med Commun. 2014;35(8):808-17.

https://doi.org/10.1097/MNM.0000000000000132

PMid:24751702

Guven A, Salman S, Boztepe H, Yarman S, Tanakol R, Azizlerli H, Alagol F. Parathyroid changes after high dose radioactive iodine in patients with thyroid cancer. Ann Nucl Med. 2009;23(5):437-41.

https://doi.org/10.1007/s12149-009-0270-4

PMid:19455388

Lin Y. Internal radiation therapy: a neglected aspect of nuclear medicine in the molecular era. J Biomed Res. 2015;29(5):345-55.

Wyszomirska A. Iodine-131 for therapy of thyroid diseases. Physical and biological basis. Nucl Med Rev. 2012;15(2):120-3.

Rosen IB, Palmer JA, Rowen J, Luk SC. Induction of hyperparathyroidism by radioactive iodine. Amj Surg. 1984;148(4):441-5.

https://doi.org/10.1016/0002-9610(84)90366-0

Kawamura J, Tobisu K, Sanada S, Okada Y, Yoshida O, Minami S, et al. Hyperparathyroidism after radioactive iodine therapy for Graves' disease: a case report. Hinyokika kiyo. Acta Urologica Japonica. 1983;29(11):1513-9.

Esselstyn Jr CB, Schumacher OP, Eversman J, Sheeler L, Levy WJ. Hyperparathyroidism after radioactive iodine therapy for Graves disease. Surg. 1982;92(5):811-3.

Ehrhardt JD Jr, Güleç S. A Review of the History of Radioactive Iodine Theranostics: The Origin of Nuclear Ontology. Mol Imaging Radionucl Ther. 2020;29(3):88-97.

https://doi.org/10.4274/mirt.galenos.2020.83703

PMid:33094571 PMCid:PMC7583745

Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid. 2016;26(1):1-33.

https://doi.org/10.1089/thy.2015.0020

PMid:26462967 PMCid:PMC4739132

Sokolov M, Neumann R. Changes in gene expression as one of the key mechanisms involved in radiation induced bystander effect. Bio Med Rep. 2018;9(2):99-111.

https://doi.org/10.3892/br.2018.1110

PMid:30013775 PMCid:PMC6036822

Mattar E, Salih MA, Alsafi K, Suliman II. Radiation Protection in The Release of Patients Receiving 131I Treatment. Radiat Prot Dosi. 2019;187(4):499-508.

https://doi.org/10.1093/rpd/ncz190

PMid:31605121

Lu L, Shan F, Li W, Lu H. Short-Term Side Effects after Radioiodine Treatment in Patients with Differentiated Thyroid Cancer. Biomed Res Int. 2016;2016:4376720.

https://doi.org/10.1155/2016/4376720

PMid:26989683 PMCid:PMC4773544

Wei S, Baloch ZW, LiVolsi VA. Parathyroid adenoma in patients with Graves' disease: a report of 21 cases. Endocr Pathol. 2015;26(1):71-4.

https://doi.org/10.1007/s12022-014-9349-0

Szumowski P, Abdelrazek S, Mojsak M, Rogowski F, Kociura-Sawicka A, Myśliwiec J. Parathyroid gland function after radioiodine (131I) therapy for toxic and non-toxic goitre. Endokrynol Pol. 2013;64(5):340-5.

https://doi.org/10.5603/EP.2013.0015

PMid:24186589

Iqbal AA, Burgess EH, Gallina DL, Nanes MS, Cook CB. Hypercalcemia in hyperthyroidism: patterns of serum calcium, parathyroid hormone, and 1,25-dihydroxyvitamin D3 levels during management of thyrotoxicosis. Endocr Pract. 2003;9(6):517-21.

https://doi.org/10.4158/EP.9.6.517

PMid:14715479

Bassett JH, Williams GR. Role of Thyroid Hormones in Skeletal Development and Bone Maintenance. Endocr Rev. 2016;37(2):135-87.

https://doi.org/10.1210/er.2015-1106

PMid:26862888 PMCid:PMC4823381

Published
2022-10-18
How to Cite
Movahedi, M. M., Karimaghaei, G. R., Noori, A., Atefi, M., Mahmoudi, T., & Gheisari, F. (2022). Changes in Serum Alkaline Phosphatase, Calcium, and Parathyroid Hormone with Different Doses of Iodine Therapy . Galen Medical Journal, 11, e2397. https://doi.org/10.31661/gmj.v11i.2397
Section
Short Communication