Mesenchymal Stem Cells as A New Approach for the Treatment of Multiple Sclerosis: A Literature Review

  • Amirabbas Rostami Department of Internal Medicine, Faculty of General Medicine, Yerevan State Medical University after Mkhitar Heratsi, Yerevan, Armenia
  • Yusef Abbasi Department of Anatomy, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
  • Sheida Jamalnia Department of Nursing and Midwifery, Kazeroun Branch, Islamic Azad University, Kazeroun, Iran
  • Asma Asadian Clinical Research Development Unit, 9 Dey Educational Hospital, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
  • Hossein Enani Faculty of Medicine, Islamic Azad University, Marand Branch, Marand, Iran
  • Morteza Jafarinia Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
Keywords: Multiple Sclerosis, Mesenchymal Stem Cells, Human Leukocyte Antigen

Abstract

Multiple sclerosis (MS) is a high-prevalence autoimmune and neurodegenerative disease that affects young adults. An ideal treatment for MS should have two characteristics. First, its immunosuppression and immunomodulation effects reduce the abnormal immune response, and second, it improves repair by enhancing intrinsic repair processes or even cell replacement. Most available therapies have the first characteristic. Recent studies have proposed mesenchymal stem cells (MSCs) as a new therapeutic candidate for MS. Different clinical trials and animal models of MS have shown the therapeutic effect of MSCs. In the current study, we reviewed the therapeutic effects of MSCs in the animal model and patients with MS.

References

Jafarinia M, Amoon M, Javid A, Vakili S, Sadeghi E, Azadi D, et al. Male microchimerism in peripheral blood from women with multiple sclerosis in Isfahan Province. Int J Immunogenet. 2020;47(2):175-9.

https://doi.org/10.1111/iji.12465

PMid:31833227

Jafarinia M, Ashja-Arvan M, Hosseininasab F, Vakili S, Sadeghi E, Etemadifar M, et al. Evaluation of plasma soluble CD137 level in relapsing-remitting multiple sclerosis patients in comparison with healthy controls in Isfahan Province, Iran. Neurology Asia. 2020;25(3):361-5.

Browne P, Chandraratna D, Angood C, Tremlett H, Baker C, Taylor BV, et al. Atlas of multiple sclerosis 2013: a growing global problem with widespread inequity. Neurology. 2014;83(11):1022-4.

https://doi.org/10.1212/WNL.0000000000000768

PMid:25200713 PMCid:PMC4162299

Ascherio A. Environmental factors in multiple sclerosis. Expert Rev Neurother. 2013;13(sup2):3-9.

https://doi.org/10.1586/14737175.2013.865866

PMid:24289836

Jafarinia M, Sadeghi E, Alsahebfosoul F, Etemadifar M, Jahanbani-Ardakani H. Evaluation of plasma Osteopontin level in relapsing-remitting multiple sclerosis patients compared to healthy subjects in Isfahan Province. Int J Neurosci. 2020;130(5):493-8.

https://doi.org/10.1080/00207454.2019.1694925

PMid:31795798

Greenfield AL, Hauser SL. B‐cell Therapy for Multiple Sclerosis: Entering an era. Ann Neurol. 2018;83(1):13-26.

https://doi.org/10.1002/ana.25119

PMid:29244240 PMCid:PMC5876115

Leray E, Yaouanq J, Le Page E, Coustans M, Laplaud D, Oger J, et al. Evidence for a two-stage disability progression in multiple sclerosis. Brain. 2010;133(7):1900-13.

https://doi.org/10.1093/brain/awq076

PMid:20423930 PMCid:PMC2892936

Loma I, Heyman R. Multiple sclerosis: pathogenesis and treatment. Curr Neuropharmacol. 2011;9(3):409-16.

https://doi.org/10.2174/157015911796557911

PMid:22379455 PMCid:PMC3151595

Hauser SL, Cree BA. Treatment of multiple sclerosis: a review. Am J Med. 2020;133(12):1380-90.

https://doi.org/10.1016/j.amjmed.2020.05.049

PMid:32682869 PMCid:PMC7704606

Sormani MP, Muraro PA, Schiavetti I, Signori A, Laroni A, Saccardi R, et al. Autologous hematopoietic stem cell transplantation in multiple sclerosis: a meta-analysis. Neurology. 2017;88(22):2115-22.

https://doi.org/10.1212/WNL.0000000000003987

PMid:28455383

Ramagopalan SV, Dobson R, Meier UC, Giovannoni G. Multiple sclerosis: risk factors, prodromes, and potential causal pathways. The Lancet Neurology. 2010;9(7):727-39.

https://doi.org/10.1016/S1474-4422(10)70094-6

PMid:20610348

Al-Obaidi ZMJ, Hussein YA, AL-Duhaidahawi D, Al-Aubaidy HA. Molecular docking studies and biological evaluation of luteolin on cerebral ischemic reperfusion injury. Egyptian Journal of Chemistry. 2022;65(6):1-2.

Hollenbach JA, Oksenberg JR. The immunogenetics of multiple sclerosis: a comprehensive review. J Autoimmun. 2015;64:13-25.

https://doi.org/10.1016/j.jaut.2015.06.010

PMid:26142251 PMCid:PMC4687745

Kurtzke JF. Epidemiology in multiple sclerosis: a pilgrim's progress. Brain. 2013;136(9):2904-17.

https://doi.org/10.1093/brain/awt220

PMid:23983034

Pakpoor J, Disanto G, Gerber JE, Dobson R, Meier UC, Giovannoni G, et al. The risk of developing multiple sclerosis in individuals seronegative for Epstein-Barr virus: a meta-analysis. Mult Scle. 2013;19(2):162-6.

https://doi.org/10.1177/1352458512449682

PMid:22740437

Handel AE, Williamson AJ, Disanto G, Handunnetthi L, Giovannoni G, Ramagopalan SV. An updated meta-analysis of risk of multiple sclerosis following infectious mononucleosis. PLoS One. 2010;5(9):e12496.

https://doi.org/10.1371/journal.pone.0012496

PMid:20824132 PMCid:PMC2931696

Lang HL, Jacobsen H, Ikemizu S, Andersson C, Harlos K, Madsen L, et al. A functional and structural basis for TCR cross-reactivity in multiple sclerosis. Nat Immunol. 2002;3(10):940.

https://doi.org/10.1038/ni835

PMid:12244309

Tracy SI, Kakalacheva K, Lünemann JD, Luzuriaga K, Middeldorp J, Thorley-Lawson DA. Persistence of Epstein-Barr virus in self-reactive memory B cells. J Virol. 2012;86(22):12330-40.

https://doi.org/10.1128/JVI.01699-12

PMid:22951828 PMCid:PMC3486485

Koch-Henriksen N, Sørensen PS. The changing demographic pattern of multiple sclerosis epidemiology. The Lancet Neurology. 2010;9(5):520-32.

https://doi.org/10.1016/S1474-4422(10)70064-8

PMid:20398859

Palacios N, Alonso A, BrØnnum-Hansen H, Ascherio A. Smoking and increased risk of multiple sclerosis: parallel trends in the sex ratio reinforce the evidence. Ann Epidemiol. 2011;21(7):536-42.

https://doi.org/10.1016/j.annepidem.2011.03.001

PMid:21550815 PMCid:PMC3124940

Handel AE, Williamson AJ, Disanto G, Dobson R, Giovannoni G, Ramagopalan SV. Smoking and multiple sclerosis: an updated meta-analysis. PLoS One. 2011;6(1):e16149.

https://doi.org/10.1371/journal.pone.0016149

PMid:21249154 PMCid:PMC3020969

Napier MD, Poole C, Satten GA, Ashley-Koch A, Marrie RA, Williamson DM. Heavy metals, organic solvents, and multiple sclerosis: An exploratory look at gene-environment interactions. Arch Environ Occup Health. 2016;71(1):26-34.

https://doi.org/10.1080/19338244.2014.937381

PMid:25137520 PMCid:PMC4334728

Hedström AK, Bäärnhielm M, Olsson T, Alfredsson L. Tobacco smoking, but not Swedish snuff use, increases the risk of multiple sclerosis. Neurology. 2009;73(9):696-701.

https://doi.org/10.1212/WNL.0b013e3181b59c40

PMid:19720976

Orton S-M, Herrera BM, Yee IM, Valdar W, Ramagopalan SV, Sadovnick AD, et al. Sex ratio of multiple sclerosis in Canada: a longitudinal study. The Lancet Neurology. 2006;5(11):932-6.

https://doi.org/10.1016/S1474-4422(06)70581-6

PMid:17052660

Pearce J. Historical descriptions of multiple sclerosis. Eur Neurol. 2005;54(1):49-53.

https://doi.org/10.1159/000087387

https://doi.org/10.1159/000091429

Karussis D. The diagnosis of multiple sclerosis and the various related demyelinating syndromes: a critical review. J Autoimmun. 2014;48:134-42.

https://doi.org/10.1016/j.jaut.2014.01.022

PMid:24524923

Lassmann H. Pathology and disease mechanisms in different stages of multiple sclerosis. J Neurol Sci. 2013;333(1-2):1-4.

https://doi.org/10.1016/j.jns.2013.05.010

PMid:23735777

Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mörk S, Bö L. Axonal transection in the lesions of multiple sclerosis. N Engl J Med. 1998;338(5):278-85.

https://doi.org/10.1056/NEJM199801293380502

PMid:9445407

Frischer JM, Bramow S, Dal-Bianco A, Lucchinetti CF, Rauschka H, Schmidbauer M, et al. The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain. 2009;132(5):1175-89.

https://doi.org/10.1093/brain/awp070

PMid:19339255 PMCid:PMC2677799

Tallantyre E, Bø L, Al-Rawashdeh O, Owens T, Polman C, Lowe J, et al. Greater loss of axons in primary progressive multiple sclerosis plaques compared to secondary progressive disease. Brain. 2009;132(5):1190-9.

https://doi.org/10.1093/brain/awp106

PMid:19420101

Mohamed Saleh Omar Korbag S, Mohamed Saleh Omar Korbag I. A new study biological role of HPV infection, oral contraceptive use, sex hormones and bisphenol A and increase rate cancer of cervical in Libya. Journal of Medicinal and Chemical Sciences. 2020;3(4):354-62.

Dobson R, Giovannoni G. Multiple sclerosis-a review. Eur Neurol. 2019;26(1):27-40.

https://doi.org/10.1111/ene.13819

PMid:30300457

Wei X, Yang X, Han Z-p, Qu F-f, Shao L, Shi Y-f. Mesenchymal stem cells: a new trend for cell therapy. Acta Pharmacol Sin. 2013;34(6):747-54.

https://doi.org/10.1038/aps.2013.50

PMid:23736003 PMCid:PMC4002895

Jafarinia M, Alsahebfosoul F, Salehi H, Eskandari N, Ganjalikhani-Hakemi M. Mesenchymal stem cell-derived extracellular vesicles: a novel cell-free therapy. Immunol Invest. 2020;49(7):758-80.

https://doi.org/10.1080/08820139.2020.1712416

PMid:32009478

Shadmanesh A, Nazari H, Shirazi A, Ahmadi E, Shams-Esfandabadi N. An inexpensive and simple method for isolation mesenchymal stem cell of human amnion membrane. International Journal of Advanced Biological and Biomedical Research. 2021;9(1):119-27.

Berebichez-Fridman R, Montero-Olvera PR. Sources and clinical applications of mesenchymal stem cells: state-of-the-art review. Sultan Qaboos Univ Med J. 2018;18(3):e264.

https://doi.org/10.18295/squmj.2018.18.03.002

PMid:30607265 PMCid:PMC6307657

Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315-7.

https://doi.org/10.1080/14653240600855905

PMid:16923606

Vizoso FJ, Eiro N, Cid S, Schneider J, Perez-Fernandez R. Mesenchymal stem cell secretome: toward cell-free therapeutic strategies in regenerative medicine. Int J Mol Sci. 2017;18(9):1852.

https://doi.org/10.3390/ijms18091852

PMid:28841158 PMCid:PMC5618501

Eleuteri S, Fierabracci A. Insights into the secretome of mesenchymal stem cells and its potential applications. Int J Mol Sci. 2019;20(18):4597.

https://doi.org/10.3390/ijms20184597

PMid:31533317 PMCid:PMC6770239

Harrell CR, Fellabaum C, Jovicic N, Djonov V, Arsenijevic N, Volarevic V. Molecular mechanisms responsible for therapeutic potential of mesenchymal stem cell-derived secretome. Cells. 2019;8(5):467.

https://doi.org/10.3390/cells8050467

PMid:31100966 PMCid:PMC6562906

Jafarinia M, Alsahebfosoul F, Salehi H, Eskandari N, Azimzadeh M, Mahmoodi M, et al. Therapeutic effects of extracellular vesicles from human adipose‐derived mesenchymal stem cells on chronic experimental autoimmune encephalomyelitis. J Cell Physiol. 2020;235(11):8779-90.

https://doi.org/10.1002/jcp.29721

PMid:32329062

Ghasemi N. Transdifferentiation of human adipose-derived mesenchymal stem cells into oligodendrocyte progenitor cells. Iran J Neurol. 2018;17(1):24.

Jadasz JJ, Tepe L, Beyer F, Samper Agrelo I, Akkermann R, Spitzhorn LS, et al. Human mesenchymal factors induce rat hippocampal‐and human neural stem cell dependent oligodendrogenesis. Glia. 2018;66(1):145-60.

https://doi.org/10.1002/glia.23233

PMid:28940767

Song N, Scholtemeijer M, Shah K. Mesenchymal stem cell immunomodulation: mechanisms and therapeutic potential. Trends Pharmacol Sci. 2020;41(9):653-64.

https://doi.org/10.1016/j.tips.2020.06.009

PMid:32709406 PMCid:PMC7751844

Jiang W, Xu J. Immune modulation by mesenchymal stem cells. Cell Proliferation. 2020;53(1):e12712.

https://doi.org/10.1111/cpr.12712

Kassis I, Grigoriadis N, Gowda-Kurkalli B, Mizrachi-Kol R, Ben-Hur T, Slavin S, et al. Neuroprotection and immunomodulation with mesenchymal stem cells in chronic experimental autoimmune encephalomyelitis. Arch Neurol. 2008;65(6):753-61.

https://doi.org/10.1001/archneur.65.6.753

PMid:18541795

Li J, Chen Y, Chen Z, Huang Y, Yang D, Su Z, et al. Therapeutic effects of human adipose tissue-derived stem cell (hADSC) transplantation on experimental autoimmune encephalomyelitis (EAE) mice. Sci Rep. 2017;7:42695.

https://doi.org/10.1038/srep42695

PMid:28198408 PMCid:PMC5309875

Cohen JA, Imrey PB, Planchon SM, Bermel RA, Fisher E, Fox RJ, et al. Pilot trial of intravenous autologous culture-expanded mesenchymal stem cell transplantation in multiple sclerosis. Mult Scler. 2018;24(4):501-11.

https://doi.org/10.1177/1352458517703802

PMid:28381130 PMCid:PMC5623598

Anderson P, Gonzalez-Rey E, O'Valle F, Martin F, Oliver FJ, Delgado M. Allogeneic adipose-derived mesenchymal stromal cells ameliorate experimental autoimmune encephalomyelitis by regulating self-reactive T cell responses and dendritic cell function. Stem Cells Int. 2017;2017:2389753.

https://doi.org/10.1155/2017/2389753

PMid:28250776 PMCid:PMC5303870

Niapour N, Taghipour Z, Salehi H, Bagheri A, Rouhani A, Talebi M, et al. Isolation and identification of mesenchymal and neural crest characteristics of dental pulp derived stem cells. Koomesh. 2015;16(4):520-6.

Koc O, Lazarus H. Mesenchymal stem cells: heading into the clinic. Bone Marrow Transplant. 2001;27(3):235.

https://doi.org/10.1038/sj.bmt.1702791

PMid:11277170

Sarvar DP, Shamsasenjan K, Akbarzadehlaleh P. Mesenchymal stem cell-derived exosomes: new opportunity in cell-free therapy. Adv Pharm Bull. 2016;6(3):293.

https://doi.org/10.15171/apb.2016.041

PMid:27766213 PMCid:PMC5071792

Horwitz EM, Andreef M, Frassoni F. Mesenchymal stromal cells. Curr Opin Hematol. 2006;13(6):419.

https://doi.org/10.1097/01.moh.0000245697.54887.6f

PMid:17053453 PMCid:PMC3365862

Abdi R, Fiorina P, Adra CN, Atkinson M, Sayegh MH. Immunomodulation by mesenchymal stem cells: a potential therapeutic strategy for type 1 diabetes. Diabetes. 2008;57(7):1759-67.

https://doi.org/10.2337/db08-0180

PMid:18586907 PMCid:PMC2453631

Gallina C, Turinetto V, Giachino C. A new paradigm in cardiac regeneration: the mesenchymal stem cell secretome. Stem Cells Int. 2015;2015:1-10.

https://doi.org/10.1155/2015/765846

PMid:26074978 PMCid:PMC4436518

Bonab MM, Mohajeri M, Sahraian MA, Yazdanifar M, Aghsaie A, Farazmand A, et al. Evaluation of cytokines in multiple sclerosis patients treated with mesenchymal stem cells. Arch Med Res. 2013;44(4):266-72.

https://doi.org/10.1016/j.arcmed.2013.03.007

PMid:23684533

Yamout B, Hourani R, Salti H, Barada W, El-Hajj T, Al-Kutoubi A, et al. Bone marrow mesenchymal stem cell transplantation in patients with multiple sclerosis: a pilot study. J Neuroimmunol. 2010;227(1-2):185-9.

https://doi.org/10.1016/j.jneuroim.2010.07.013

PMid:20728948

Sato T, Iso Y, Uyama T, Kawachi K, Wakabayashi K, Omori Y, et al. Coronary vein infusion of multipotent stromal cells from bone marrow preserves cardiac function in swine ischemic cardiomyopathy via enhanced neovascularization. Lab Invest. 2011;91(4):553.

https://doi.org/10.1038/labinvest.2010.202

PMid:21283079

Zappia E, Casazza S, Pedemonte E, Benvenuto F, Bonanni I, Gerdoni E, et al. Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood. 2005;106(5):1755-61.

https://doi.org/10.1182/blood-2005-04-1496

PMid:15905186

Constantin G, Marconi S, Rossi B, Angiari S, Calderan L, Anghileri E, et al. Adipose‐derived mesenchymal stem cells ameliorate chronic experimental autoimmune encephalomyelitis. Stem Cells. 2009;27(10):2624-35.

https://doi.org/10.1002/stem.194

PMid:19676124

Gerdoni E, Gallo B, Casazza S, Musio S, Bonanni I, Pedemonte E, et al. Mesenchymal stem cells effectively modulate pathogenic immune response in experimental autoimmune encephalomyelitis. Ann Neurol. 2007;61(3):219-27.

https://doi.org/10.1002/ana.21076

PMid:17387730

Connick P, Kolappan M, Crawley C, Webber DJ, Patani R, Michell AW, et al. Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: an open-label phase 2a proof-of-concept study. The Lancet Neurology. 2012;11(2):150-6.

https://doi.org/10.1016/S1474-4422(11)70305-2

PMid:22236384

Stepien A, Dabrowska NL, Maciagowska M, Macoch RP, Zolocinska A, Mazur S, et al. Clinical application of autologous adipose stem cells in patients with multiple sclerosis: preliminary results. Mediators Inflamm. 2016;2016:5302120.

https://doi.org/10.1155/2016/5302120

PMid:27761060 PMCid:PMC5059576

Mohyeddin Bonab M, Ali Sahraian M, Aghsaie A, Ahmadi Karvigh S, Massoud Hosseinian S, Nikbin B, et al. Autologous mesenchymal stem cell therapy in progressive multiple sclerosis: an open label study. Curr Stem Cell Res Ther. 2012;7(6):407-14.

https://doi.org/10.2174/157488812804484648

PMid:23061813

Karussis D, Karageorgiou C, Vaknin-Dembinsky A, Gowda-Kurkalli B, Gomori JM, Kassis I, et al. Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol. 2010;67(10):1187-94.

https://doi.org/10.1001/archneurol.2010.248

PMid:20937945 PMCid:PMC3036569

Liu J, Feng B, Xu Y, Zhu J, Feng X, Chen W, et al. Immunomodulatory effect of mesenchymal stem cells in chemical-induced liver injury: a high-dimensional analysis. Stem Cell Res Ther. 2019;10(1):1-13.

https://doi.org/10.1186/s13287-019-1379-6

PMid:31443686 PMCid:PMC6708172

Herrero C, Perez-Simon J. Immunomodulatory effect of mesenchymal stem cells. Braz J Med Biol Res. 2010;43(5):425-30.

https://doi.org/10.1590/S0100-879X2010007500033

PMid:20490429

Published
2022-12-17
How to Cite
Rostami, A., Abbasi, Y., Jamalnia, S., Asadian, A., Enani, H., & Jafarinia, M. (2022). Mesenchymal Stem Cells as A New Approach for the Treatment of Multiple Sclerosis: A Literature Review . Galen Medical Journal, 11, e2529. https://doi.org/10.31661/gmj.v11i.2529
Section
Review Article