The Functionality of Apigenin as a Novel Cardioprotective Nutraceutical with Emphasize on Regulating Cardiac Micro RNAs

  • Venus Shahabi Raberi Department of Cardiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
  • Mahboubeh Esmati School of medicine, North Khorasan University of Medical science, Bojnourd, Iran
  • Haleh Bodagh Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
  • Reza Ghasemi Department of Cardiology, Torbat Heydarieh University of Medical Sciences, Torbat Heydarieh, Iran
  • Mehrdad Ghazal Department of Psychiatric Nursing, Islamic Azad University of Medical Sciences, Tehran, Iran
  • Azita Matinpour School of Nursing and Midwifery, Iran University of Medical Sciences, Tehran, Iran
  • Mohsen Abbasnezhad Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
Keywords: Cardiovascular Diseases, MicroRNAs, Antioxidants, Reactive Oxygen Species, Apigenin


Cardiovascular diseases (CVDs) are considered the most common disorder and the leading cause of mortality globally. The etiology of CVDs depends on a variety of genetic and acquired parameters. Nowadays, a dramatic surge appeared in published reports to find the association between microRNAs (miRNAs) and CVDs in order to understand the cause of the disease, rapid diagnosis with the introduction of valid biomarkers, and target as a therapeutic approach. Apigenin is a novel nutraceutical flavonoid that cardioprotective properties are suggested. The current review aimed to evaluate the beneficial features of this phytochemical against CVDs with an emphasis on its ability to regulate the miRNAs. The findings demonstrated that Apigenin could regulate cardiac miRNAs, including miR-103, miR-122-5p, miR-15b, miR-155, and miR-33. Consequently, preventing CVDs is possible through different effects such as the promotion of cholesterol efflux, prevention of hyperlipidemia, alteration in ATP Binding Cassette Subfamily A Member 1 (ABCA1) levels, reducing of cardiocytes apoptosis, and retarding myocytes fibrosis. Also, it can regulate signaling pathways, protect against endothelial dysfunction, maintain oxidative balance, and decrease inflammatory factors and reactive oxygen species. Hence, apigenin regulatory characteristics affecting miRNAs expression could introduce this flavonoid as a novel cardioprotective phytochemical against different CVDs.


Afzal M. Recent updates on novel therapeutic targets of cardiovascular diseases. Mol Cell Biochem. 2021;476(1):145-55.


Şahin B, İlgün G. Risk factors of deaths related to cardiovascular diseases in World Health Organization (WHO) member countries. Health Soc Care Community. 2022;30(1):73-80.


Rottapel RE, Hudson LB, Folta SC. Cardiovascular health and African-American women: A qualitative analysis. Am J Health Behav. 2021;45(4):735-45.


Bassey IE, Akpan UO, Nehemiah ED, Arekong R, Okonkwo OL, Udoh AE. Cardiovascular Disease Risk Factors and Cardiac Markers among Male Cement Workers in Calabar, Nigeria. Journal of Chemical Health Risks. 2017;7(2):85-94.

Kazibwe J, Tran PB, Annerstedt KS. The household financial burden of non-communicable diseases in low-and middle-income countries: a systematic review. Health Res Policy Syst. 2021;19(1):1-15.

PMid:34154609 PMCid:PMC8215836

Timmis A, Vardas P, Townsend N, Torbica A, Katus H, De Smedt D, et al. European Society of Cardiology: cardiovascular disease statistics 2021. Eur Heart J. 2022;43(8):716-99.


Efremova O, Kamyshnikova L, Veysalov S, Sviridova M, Obolonkova N, Gayvoronskaya M, et al. Investigation on the Association of Cardiovascular Markers with Severity of Chronic Pyelonephritis. Arch Razi Inst. 2022;77(1):315-21.

Rezaei M, Sanagoo A, Jouybari L, Behnampoo N, Kavosi A. The effect of probiotic yogurt on blood glucose and cardiovascular biomarkers in patients with type II diabetes: a randomized controlled trial. Evid Based Care J. 2017;6(4):26-35.

Blaum C, Brunner FJ, Kröger F, Braetz J, Lorenz T, Goßling A, et al. Modifiable lifestyle risk factors and C-reactive protein in patients with coronary artery disease: Implications for an anti-inflammatory treatment target population. Eur J Prev Cardiol. 2021;28(2):152-8.


Mannoh I, Hussien M, Commodore-Mensah Y, Michos ED. Impact of social determinants of health on cardiovascular disease prevention. Curr Opin Cardiol. 2021;36(5):572-9.


Ndejjo R, Musinguzi G, Nuwaha F, Bastiaens H, Wanyenze RK. Understanding factors influencing uptake of healthy lifestyle practices among adults following a community cardiovascular disease prevention programme in Mukono and Buikwe districts in Uganda: A qualitative study. PLoS One. 2022;17(2):e0263867.

PMid:35176069 PMCid:PMC8853581

Elkoustaf RA, Nwaokoro M, Lahti DA, Yao JF, Gin N, Cotter TM, et al. Bridging the Gender Divide in Cardiovascular Rehabilitation: a Work in Progress. J Am Coll Cardiol. 2022;79(9_Supplement):1596.

Joseph P, Kutty VR, Mohan V, Kumar R, Mony P, Vijayakumar K, et al. Cardiovascular disease, mortality, and their associations with modifiable risk factors in a multi-national South Asia cohort: a PURE substudy. Eur Heart J. 2022;43(30):2831-40.


Pederiva C, Capra ME, Biasucci G, Banderali G, Fabrizi E, Gazzotti M, et al. Lipoprotein (a) and family history for cardiovascular disease in paediatric patients: A new frontier in cardiovascular risk stratification. Data from the LIPIGEN paediatric group. Atherosclerosis. 2022;349:233-9.


Andergassen D, Rinn JL. From genotype to phenotype: genetics of mammalian long non-coding RNAs in vivo. Nat Rev Genet. 2022;23(4):229-43.


Fang Y, Dai X. Emerging roles of extracellular non-coding RNAs in vascular diseases. J Cardiovasc Transl Res. 2022:1-8.


Tanase DM, Gosav EM, Petrov D, Teodorescu D-S, Buliga-Finis ON, Ouatu A, et al. MicroRNAs (miRNAs) in Cardiovascular Complications of Rheumatoid Arthritis (RA): What Is New? Int J Mol Sci. 2022;23(9):5254.

PMid:35563643 PMCid:PMC9101033

Wronska A. The role of microRNA in the Development, Diagnosis, and Treatment of Cardiovascular Disease-Recent Developments. Journal of Pharmacology and Experimental Therapeutics. 2022.


Altintaş N, Onur T, Yilmaz ÖS. Effects of microRNAs in hypertension disease. The Euro Res J. 2022;8(1):131-8.

Improta-Caria AC. Physical Exercise and MicroRNAs: Molecular Mechanisms in Hypertension and Myocardial Infarction. Arq Bras Cardiol. 2022;118:1147-9.

PMid:35703656 PMCid:PMC9345150

Li H, Chen M, Feng Q, Zhu L, Bai Z, Wang B, et al. MicroRNA‐34a in coronary heart disease: Correlation with disease risk, blood lipid, stenosis degree, inflammatory cytokines, and cell adhesion molecules. J Clin Lab Anal. 2022;36(1):e24138.

Li H, Zhan J, Chen C, Wang D. MicroRNAs in cardiovascular diseases. Med Review. 2022;2(9):140-68.

Santovito D, Weber C. Non-canonical features of microRNAs: Paradigms emerging from cardiovascular disease. Nat Rev Cardiol. 2022:1-19.


Jenča D, Melenovský V, Stehlik J, Staněk V, Kettner J, Kautzner J, et al. Heart failure after myocardial infarction: incidence and predictors. ESC Heart Failure. 2021;8(1):222-37.

PMid:33319509 PMCid:PMC7835562

Abbasi A, Movahedpour A, Amiri A, Najaf MS, Mostafavi-Pour Z. Darolutamide as a second-generation androgen receptor inhibitor in the treatment of prostate cancer. Curr Mol Med. 2021;21(4):332-46.


Samare-Najaf M, Samareh A, Jamali N, Abbasi A, Clark CC, Khorchani MJ, et al. Adverse Effects and Safety of Etirinotecan Pegol, a Novel Topoisomerase Inhibitor, in Cancer Treatment: A Systematic Review. Curr Cancer Ther Rev. 2021;17(3):234-43.

Jafari Khorchani M, Samare-Najaf M, Abbasi A, Vakili S, Zal F. Effects of quercetin, vitamin E, and estrogen on Metabolic-Related factors in uterus and serum of ovariectomized rat models. Gynecol Endocrinol. 2021;37(8):764-8.


Samare-Najaf M, Zal F, Safari S. Primary and secondary markers of doxorubicin-induced female infertility and the alleviative properties of quercetin and vitamin E in a rat model. Reprod Toxicol. 2020;96:316-26.


Samare-Najaf M, Zal F, Safari S, Koohpeyma F, Jamali N. Stereological and histopathological evaluation of doxorubicin-induced toxicity in female rats' ovary and uterus and palliative effects of quercetin and vitamin E. Hum Exp Toxicol. 2020;39(12):1710-24.


Jamali N, Kazemi A, Saffari-Chaleshtori J, Samare-Najaf M, Mohammadi V, Clark CC. The effect of cinnamon supplementation on lipid profiles in patients with type 2 diabetes: A systematic review and meta-analysis of clinical trials. Complement Ther Med. 2020;55:102571.


Jamali N, Zal F, Mostafavi-Pour Z, Samare-Najaf M, Poordast T, Dehghanian A. Ameliorative effects of quercetin and metformin and their combination against experimental endometriosis in rats. Reprod Sci. 2021;28(3):683-92.


Jamali N, Soureshjani EH, Mobini G-R, Samare-Najaf M, Clark CC, Saffari-Chaleshtori J. Medicinal plant compounds as promising inhibitors of coronavirus (COVID-19) main protease: an in silico study. J Biomol Struct Dyn. 2021:1-12.


Da Purificação NRC, Garcia VB, Frez FCV, Sehaber CC, Lima KRDA, De Oliveira Lima MF, et al. Combined use of systemic quercetin, glutamine and alpha-tocopherol attenuates myocardial fibrosis in diabetic rats. Biomed Pharmacother. 2022;151:113131.


Jamali N, Jalali M, Saffari-Chaleshtori J, Samare-Najaf M, Samareh A. Effect of cinnamon supplementation on blood pressure and anthropometric parameters in patients with type 2 diabetes: A systematic review and meta-analysis of clinical trials. Diabetes Metab Syndr. 2020;14(2):119-25.


Fan Z-k, Wang C, Yang T, Li X, Guo X, Li D. Flavonoid subclasses and CHD risk: a meta-analysis of prospective cohort studies. Br J Nutr. 2021:1-11.


Li Xq, Wang C, Yang T, Fan Zk, Guo Xf. A meta‐analysis of prospective cohort studies of flavonoid subclasses and stroke risk. Phytother Res. 2022;36(3):1103-14.


Lee Y, Im E. Regulation of miRNAs by natural antioxidants in cardiovascular diseases: Focus on SIRT1 and eNOS. Antioxidants. 2021;10(3):377.

PMid:33802566 PMCid:PMC8000568

Shao D, Lian Z, Di Y, Zhang L, Zhang Y, Kong J, et al. Dietary compounds have potential in controlling atherosclerosis by modulating macrophage cholesterol metabolism and inflammation via miRNA. npj Sci of Food. 2018;2(1):1-9.

PMid:31304263 PMCid:PMC6550192

Cannataro R, Fazio A, La Torre C, Caroleo MC, Cione E. Polyphenols in the Mediterranean diet: From dietary sources to microRNA modulation. Antioxidants. 2021;10(2):328.

PMid:33672251 PMCid:PMC7926722

Alrekabi DG, Hamad MN. Phytochemical investigation of Sonchus oleraceus (Family: Asteraceae) cultivated in Iraq, isolation and identification of quercetin and Apigenin. J Pharm Sci. 2018;10(9):2242-8.

Gao R, Lou Q, Hao L, Qi G, Tian Y, Pu X, et al. Comparative genomics reveal the convergent evolution of CYP82D and CYP706X members related to flavone biosynthesis in Lamiaceae and Asteraceae. PlJ. 2022;109(5):1305-18.


Salehi B, Venditti A, Sharifi-Rad M, Kręgiel D, Sharifi-Rad J, Durazzo A, et al. The therapeutic potential of Apigenin. Int J Mol Sci. 2019;20(6):1305.

PMid:30875872 PMCid:PMC6472148

Grumezescu AM, Holban AM. Therapeutic, probiotic, and unconventional foods. Elsevier; 2018.

Hostetler GL, Ralston RA, Schwartz SJ. Flavones: food sources, bioavailability, metabolism, and bioactivity. Adv Nutr. 2017;8(3):423-35.

PMid:28507008 PMCid:PMC5421117

Mahajan UB, Chandrayan G, Patil CR, Arya DS, Suchal K, Agrawal YO, et al. The protective effect of Apigenin on myocardial injury in diabetic rats mediating activation of the PPAR-γ pathway. Int J Mol Sci. 2017;18(4):756.

PMid:28375162 PMCid:PMC5412341

Liu H-J, Fan Y-L, Liao H-H, Liu Y, Chen S, Ma Z-G, et al. Apigenin alleviates STZ-induced diabetic cardiomyopathy. Mol Cell Biochem. 2017;428(1):9-21.


Cardenas H, Arango D, Nicholas C, Duarte S, Nuovo GJ, He W, et al. Dietary apigenin exerts immune-regulatory activity in vivo by reducing NF-κB activity, halting leukocyte infiltration and restoring normal metabolic function. Int J Mol Sci. 2016;17(3):323.

PMid:26938530 PMCid:PMC4813185

Li D, Ma J, Wang L, Xin S. Apigenin prevent abdominal aortic aneurysms formation by inhibiting the NF-κB signaling pathway. J Cardiovasc Pharmacol. 2020;75(3):229-39.


Ihm S-H, Park S-H, Lee J-O, Kim O-R, Park E-H, Kim K-R, et al. A Standardized Lindera obtusiloba Extract Improves Endothelial Dysfunction and Attenuates Plaque Development in Hyperlipidemic ApoE-Knockout Mice. Plants. 2021;10(11):2493.

PMid:34834858 PMCid:PMC8618780

Samsonov MV, Podkuychenko NV, Khapchaev AY, Efremov EE, Yanushevskaya EV, Vlasik TN, et al. AICAR Protects Vascular Endothelial Cells from Oxidative Injury Induced by the Long-Term Palmitate Excess. Int J Mol Sci. 2021;23(1):211.

PMid:35008640 PMCid:PMC8745318

Little PJ, Askew CD, Xu S, Kamato D. Endothelial dysfunction and cardiovascular disease: history and analysis of the clinical utility of the relationship. Biomedicines. 2021;9(6):699.

PMid:34203043 PMCid:PMC8234001

Miao X, Jin C, Zhong Y, Feng J, Yan C, Xia X, et al. Data-independent acquisition-based quantitative proteomic analysis reveals the protective effect of Apigenin on palmitate-induced lipotoxicity in human aortic endothelial cells. J. Agric. Food Chem. J Agr Food Chem. 2020;68(33):8836-46.


Yamagata K, Hashiguchi K, Yamamoto H, Tagami M. Dietary apigenin reduces induction of LOX-1 and NLRP3 expression, leukocyte adhesion, and acetylated low-density lipoprotein uptake in human endothelial cells exposed to trimethylamine-N-oxide. J Cardiovasc Pharmacol. 2019;74(6):558-65.


Jiang L, Qiao Y, Wang Z, Ma X, Wang H, Li J. Inhibition of microRNA‐103 attenuates inflammation and endoplasmic reticulum stress in atherosclerosis through disrupting the PTEN‐mediated MAPK signaling. J Cell Physiol. 2020;235(1):380-93.


Wang J-X, Zhang X-J, Li Q, Wang K, Wang Y, Jiao J-Q, et al. MicroRNA-103/107 regulate programmed necrosis and myocardial ischemia/reperfusion injury through targeting FADD. Circ Res. 2015;117(4):352-63.


Zaafan MA, Abdelhamid AM. The cardioprotective effect of microRNA-103 inhibitor against isoprenaline-induced myocardial infarction in mice through targeting FADD/RIPK pathway. Eur Rev Med Pharmacol Sci. 2021;25(2):837-44

Qi H, Ren J, E M, Zhang Q, Cao Y, Ba L, et al. MiR‐103 inhibiting cardiac hypertrophy through inactivation of myocardial cell autophagy via targeting TRPV 3 channel in rat hearts. J Cell Mol Med. 2019;23(3):1926-39.

PMid:30604587 PMCid:PMC6378213

Wang Z, Zhang H, Liu Z, Ma Z, An D, Xu D. Apigenin attenuates myocardial infarction-induced cardiomyocyte injury by modulating Parkin-mediated mitochondrial autophagy. J Biosci. 2020;45(1):1-9.

Badacz R, Kleczyński P, Legutko J, Żmudka K, Gacoń J, Przewłocki T, et al. Expression of miR-1-3p, miR-16-5p and miR-122-5p as possible risk factors of secondary cardiovascular events. Biomedicines. 2021;9(8):1055.

PMid:34440258 PMCid:PMC8391895

Šatrauskienė A, Navickas R, Laucevičius A, Krilavičius T, Užupytė R, Zdanytė M, et al. Mir-1, miR-122, miR-132, and miR-133 are related to subclinical aortic atherosclerosis associated with metabolic syndrome. Int J Environ Res. 2021;18(4):1483.

PMid:33557426 PMCid:PMC7915826

Shi Y, Zhang Z, Yin Q, Fu C, Barszczyk A, Zhang X, et al. Cardiac‐specific overexpression of miR‐122 induces mitochondria‐dependent cardiomyocyte apoptosis and promotes heart failure by inhibiting Hand2. J Cell Mol Med. 2021;25(11):5326-34.

PMid:33942477 PMCid:PMC8178264

Liu Y, Song J-W, Lin J-Y, Miao R, Zhong J-C. Roles of microRNA-122 in cardiovascular fibrosis and related diseases. Cardiovasc Toxicol. 2020;20(5):463-73.

PMid:32856216 PMCid:PMC7451782

Feng W, Ying Z, Ke F, Mei-Lin X. Apigenin suppresses TGF-β1-induced cardiac fibroblast differentiation and collagen synthesis through the downregulation of HIF-1α expression by miR-122-5p. Phytomedicine. 2021;83:153481.


Wang F, Zhang J, Niu G, Weng J, Zhang Q, Xie M, Li C, Sun K. Apigenin inhibits isoproterenol-induced myocardial fibrosis and Smad pathway in mice by regulating oxidative stress and miR-122-5p/155-5p expressions. Drug Dev Res. 2022;83(4):1003-15.


Zhu Y, Yang T, Duan J, Mu N, Zhang T. MALAT1/miR-15b-5p/MAPK1 mediates endothelial progenitor cells autophagy and affects coronary atherosclerotic heart disease via mTOR signaling pathway. Aging (Albany N Y). 2019;11(4):1089-109.

PMid:30787203 PMCid:PMC6402525

Niu S, Xu L, Yuan Y, Yang S, Ning H, Qin X, et al. Effect of down-regulated miR-15b-5p expression on arrhythmia and myocardial apoptosis after myocardial ischemia reperfusion injury in mice. Biochem Biophys Res Commun. 2020;530(1):54-9.


Wang P, Sun J, Lv S, Xie T, Wang X. Apigenin alleviates myocardial reperfusion injury in rats by downregulating miR-15b. Med Sci Monit. 2019;25:2764.

PMid:30983593 PMCid:PMC6481235

Faccini J, Ruidavets J-B, Cordelier P, Martins F, Maoret J-J, Bongard V, et al. Circulating miR-155, miR-145 and let-7c as diagnostic biomarkers of the coronary artery disease. Sci Rep. 2017;7(1):1-10.

PMid:28205634 PMCid:PMC5311865

Qiu X-K, Ma J. Alteration in microRNA-155 level correspond to severity of coronary heart disease. Scand J Clin Lab Invest. 2018;78(3):219-23.


Ding H, Wang Y, Hu L, Xue S, Wang Y, Zhang L, et al. Combined detection of miR-21-5p, miR-30a-3p, miR-30a-5p, miR-155-5p, miR-216a and miR-217 for screening of early heart failure diseases. Biosci Rep. 2020;40(3):BSR20191653.

PMid:32124924 PMCid:PMC7080642

Wang F, Fan K, Zhao Y, Xie M-L. Apigenin attenuates TGF-β1-stimulated cardiac fibroblast differentiation and extracellular matrix production by targeting miR-155-5p/c-Ski/Smad pathway. J Ethnopharmacol. 2021;265:113195.


Wang H, Bei Y, Huang P, Zhou Q, Shi J, Sun Q, et al. Inhibition of miR-155 protects against LPS-induced cardiac dysfunction and apoptosis in mice. Mol Ther Nucleic Acids. 2016;5:e374.

PMid:27727247 PMCid:PMC5095684

Arango D, Diosa‐Toro M, Rojas‐Hernandez LS, Cooperstone JL, Schwartz SJ, Mo X, et al. Dietary Apigenin reduces LPS‐induced expression of miR‐155 restoring immune balance during inflammation. Mol Nutr Food Res. 2015;59(4):763-72.

PMid:25641956 PMCid:PMC7955240

Reddy LL, Shah SA, Ponde CK, Rajani RM, Ashavaid TF. Circulating miRNA-33: a potential biomarker in patients with coronary artery disease. Biomarkers. 2019;24(1):36-42.


Xie Z, Ma P. MiR-33 may be a Biological Marker for Coronary Heart Disease. J Clin Lab. 2018;64(10):1755-60.


Chen Z, Ding H-S, Guo X, Shen J-J, Fan D, Huang Y, et al. MiR-33 promotes myocardial fibrosis by inhibiting MMP16 and stimulating p38 MAPK signaling. Oncotarget. 2018;9(31):22047.

PMid:29774121 PMCid:PMC5955156

Price NL, Singh AK, Rotllan N, Goedeke L, Wing A, Canfrán-Duque A, et al. Genetic ablation of miR-33 increases food intake, enhances adipose tissue expansion, and promotes obesity and insulin resistance. Cell Rep. 2018;22(8):2133-45.

PMid:29466739 PMCid:PMC5860817

Afonso MS, Sharma M, Schlegel M, Van Solingen C, Koelwyn GJ, Shanley LC, et al. miR-33 silencing reprograms the immune cell landscape in atherosclerotic plaques. Circ Res. 2021;128(8):1122-38.

PMid:33593073 PMCid:PMC8049965

Ren K, Jiang T, Zhou H-F, Liang Y, Zhao G-J. Apigenin retards atherogenesis by promoting ABCA1-mediated cholesterol efflux and suppressing inflammation. Cell Physiol Biochem. 2018;47(5):2170-84.


How to Cite
Shahabi Raberi , V., Esmati , M., Bodagh, H., Ghasemi , R., Ghazal , M., Matinpour , A., & Abbasnezhad, M. (2022). The Functionality of Apigenin as a Novel Cardioprotective Nutraceutical with Emphasize on Regulating Cardiac Micro RNAs. Galen Medical Journal, 11, e2535.
Review Article