Digestive System Involvement During Coronavirus Disease 2019; the Newest Clinical Features and Potential Mechanisms
Abstract
The coronavirus disease 2019 (COVID-19), which is caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has been recognized as a worldwide pandemic and mostly affects the respiratory system. A considerable proportion of patients; however, might also experience gastrointestinal (GI) manifestations. Several investigations have assessed GI and hepatic involvement in this disease, although the mechanisms of these involvements in relation to the progression of COVID-19 remain unclear. This review summarized the clinical observations and the main mechanisms behind GI, liver, and pancreatic involvement among COVID-19 patients.References
Vakili S, Akbari H, Jamalnia S. Clinical and Laboratory findings on the differences between h1n1 influenza and coronavirus disease-2019 (covid-19): focusing on the treatment approach. Clin Pulm Med. 2020;27(4):87-93.
https://doi.org/10.1097/CPM.0000000000000362
Vakili S, Savardashtaki A, Jamalnia S, Tabrizi R, Nematollahi MH, Jafarinia M, et al. Laboratory findings of COVID-19 infection are conflicting in different age groups and pregnant women: a literature review. Archives of Medical Research. 2020;51(7):603-7.
https://doi.org/10.1016/j.arcmed.2020.06.007
PMid:32571605 PMCid:PMC7287430
Zaim S, Chong JH, Sankaranarayanan V, Harky A. COVID-19 and Multiorgan Response. Curr Probl Cardiol. 2020;45(8):100618.
https://doi.org/10.1016/j.cpcardiol.2020.100618
PMid:32439197 PMCid:PMC7187881
Zhong P, Xu J, Yang D, Shen Y, Wang L, Feng Y, et al. COVID-19-associated gastrointestinal and liver injury: clinical features and potential mechanisms. Sig Transduct Target Ther. 2020;5(1):1-8.
https://doi.org/10.1038/s41392-020-00373-7
PMid:33139693 PMCid:PMC7605138
Singal CMS, Jaiswal P, Seth P. SARS-CoV-2, more than a respiratory virus: its potential role in neuropathogenesis. ACS Chem Neurosci. 2020;11(13):1887-99.
https://doi.org/10.1021/acschemneuro.0c00251
PMid:32491829
Mao R, Qiu Y, He JS, Tan JY, Li X-H, Liang J, et al. Manifestations and prognosis of gastrointestinal and liver involvement in patients with COVID-19: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2020;5(7):667-78.
https://doi.org/10.1016/S2468-1253(20)30126-6
PMid:32405603
Zhang C, Shi L, Wang FS. Liver injury in COVID-19: management and challenges. Lancet Gastroenterol Hepatol. 2020;5(5):428-30.
https://doi.org/10.1016/S2468-1253(20)30057-1
PMid:32145190
Tian Y, Rong L, Nian W, He Y. gastrointestinal features in COVID‐19 and the possibility of faecal transmission. Aliment Pharmacol Ther. 2020;51(9):843-51.
https://doi.org/10.1111/apt.15731
PMid:32222988 PMCid:PMC7161803
Ungaro RC, Sullivan T, Colombel J-F, Patel G. What should gastroenterologists and patients know about COVID-19? Clin Gastroenterol Hepatol. 2020;18(7):1409-11.
https://doi.org/10.1016/j.cgh.2020.03.020
PMid:32197957 PMCid:PMC7156804
Cheung KS, Hung IF, Chan PP, Lung K, Tso E, Liu R, et al. Gastrointestinal manifestations of SARS-CoV-2 infection and virus load in fecal samples from a Hong Kong cohort: systematic review and meta-analysis. Gastroenterology. 2020;159(1):81-95.
https://doi.org/10.1053/j.gastro.2020.03.065
PMid:32251668 PMCid:PMC7194936
Fang D, Ma J, Guan J, Wang M, Song Y, Tian D, et al. Manifestations of digestive system of hospitalized patients with coronavirus disease 2019 in Wuhan, China: a single-center descriptive study. Chinese Journal of Digestion. 2020:151-6.
Cha MH, Regueiro M, Sandhu DS. Gastrointestinal and hepatic manifestations of COVID-19: A comprehensive review. World J Gastroenterol. 2020;26(19):2323.
https://doi.org/10.3748/wjg.v26.i19.2323
PMid:32476796 PMCid:PMC7243653
Aziz M, Haghbin H, Lee-Smith W, Goyal H, Nawras A, Adler DG. Gastrointestinal predictors of severe COVID-19: systematic review and meta-analysis. Ann Gastroenterol. 2020;33(6):615.
https://doi.org/10.20524/aog.2020.0527
PMid:33162738 PMCid:PMC7599357
Parasa S, Desai M, Chandrasekar VT, Patel HK, Kennedy KF, Roesch T, et al. Prevalence of gastrointestinal symptoms and fecal viral shedding in patients with coronavirus disease 2019: a systematic review and meta-analysis. JAMA Netw Open. 2020;3(6):e2011335.
https://doi.org/10.1001/jamanetworkopen.2020.11335
PMid:32525549 PMCid:PMC7290409
Dong ZY, Xiang BJ, Jiang M, Sun MJ, Dai C. The prevalence of gastrointestinal symptoms, abnormal liver function, digestive system disease and liver disease in COVID-19 infection: a systematic review and meta-analysis. J Clin Gastroenterol. 2021;55(1):67.
https://doi.org/10.1097/MCG.0000000000001424
PMid:33116063 PMCid:PMC7713642
Zarifian A, Zamiri Bidary M, Arekhi S, Rafiee M, Gholamalizadeh H, Amiriani A, et al. Gastrointestinal and hepatic abnormalities in patients with confirmed COVID‐19: A systematic review and meta‐analysis. J Med Virol. 2021;93(1):336-50.
https://doi.org/10.1002/jmv.26314
PMid:32681674 PMCid:PMC7405277
Kumar VCS, Mukherjee S, Harne PS, Subedi A, Ganapathy MK, Patthipati VS, et al. Novelty in the gut: a systematic review and meta-analysis of the gastrointestinal manifestations of COVID-19. BMJ Open Gastroenterol. 2020;7(1):e000417.
https://doi.org/10.1136/bmjgast-2020-000417
PMid:32457035 PMCid:PMC7252994
Tariq R, Saha S, Furqan F, Hassett L, Pardi D, Khanna S. Prevalence and Mortality of COVID-19 Patients With Gastrointestinal Symptoms: A Systematic Review and Meta-analysis. Mayo Clin Proc. 2020;95(8):1632-48.
https://doi.org/10.1016/j.mayocp.2020.06.003
PMid:32753138 PMCid:PMC7284248
Rokkas T. Gastrointestinal involvement in COVID-19: a systematic review and meta-analysis. Ann Gastroenterol. 2020;33(4):355.
https://doi.org/10.20524/aog.2020.0506
PMid:32624655 PMCid:PMC7315709
Li J, Huang DQ, Zou B, Yang H, Hui WZ, Rui F, et al. Epidemiology of COVID‐19: A systematic review and meta‐analysis of clinical characteristics, risk factors, and outcomes. J Med Virol. 2021;93(3):1449-58.
https://doi.org/10.1002/jmv.26424
PMid:32790106 PMCid:PMC7436673
Kumar A, Arora A, Sharma P, Anikhindi SA, Bansal N, Singla V, et al. Gastrointestinal and hepatic manifestations of Corona Virus Disease-19 and their relationship to severe clinical course: A systematic review and meta-analysis. Indian J Gastroenterol. 2020;39(3):268-84.
https://doi.org/10.1007/s12664-020-01058-3
PMid:32749643 PMCid:PMC7399358
Shehab M, Alrashed F, Shuaibi S, Alajmi D, Barkun A. Gastroenterological and hepatic manifestations of patients with COVID-19, prevalence, mortality by country, and intensive care admission rate: systematic review and meta-analysis. BMJ Open Gastroenterol. 2021;8(1):e000571.
https://doi.org/10.1136/bmjgast-2020-000571
PMid:33664052 PMCid:PMC7934201
Merola E, Armelao F, De Pretis G. Prevalence of gastrointestinal symptoms in coronavirus disease 2019: a meta-analysis. JAMA Netw Open. 2020;83:603-15.
Dorrell RD, Dougherty MK, Barash EL, Lichtig AE, Clayton SB, Jensen ET. Gastrointestinal and hepatic manifestations of COVID‐19: A systematic review and meta‐analysis. JGH Open. 2021;5(1):107-15.
https://doi.org/10.1002/jgh3.12456
PMid:33363257 PMCid:PMC7753450
Wang H, Qiu P, Liu J, Wang F, Zhao Q. The liver injury and gastrointestinal symptoms in patients with coronavirus disease 19: a systematic review and meta-analysis. Clin Res Hepatol Gastroenterol. 2020;44(5):653-61.
https://doi.org/10.1016/j.clinre.2020.04.012
PMid:32418852 PMCid:PMC7214284
Sultan S, Altayar O, Siddique SM, Davitkov P, Feuerstein JD, Lim JK, et al. AGA institute rapid review of the gastrointestinal and liver manifestations of COVID-19, meta-analysis of international data, and recommendations for the consultative management of patients with COVID-19. Gastroenterology. 2020;159(1):320-34.e27.
https://doi.org/10.1053/j.gastro.2020.05.001
PMid:32407808 PMCid:PMC7212965
Xiao F, Tang M, Zheng X, Liu Y, Li X, Shan H. Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology. 2020;158(6):1831-3.e3.
https://doi.org/10.1053/j.gastro.2020.02.055
PMid:32142773 PMCid:PMC7130181
Liang W, Feng Z, Rao S, Xiao C, Xue X, Lin Z, et al. Diarrhoea may be underestimated: a missing link in 2019 novel coronavirus. Gut. 2020;69(6):1141-3.
https://doi.org/10.1136/gutjnl-2020-320832
PMid:32102928
Zhang H, Kang Z, Gong H, Xu D, Wang J, Li Z, et al. Digestive system is a potential route of COVID-19: an analysis of single-cell coexpression pattern of key proteins in viral entry process. Gut. 2020;69(6):1010-8.
https://doi.org/10.1136/gutjnl-2020-320953
PMCid:PMC7211082
Lin L, Jiang X, Zhang Z, Huang S, Zhang Z, Fang Z, et al. Gastrointestinal symptoms of 95 cases with SARS-CoV-2 infection. Gut. 2020;69(6):997-1001.
https://doi.org/10.1136/gutjnl-2020-321013
PMid:32241899 PMCid:PMC7316116
Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271-80. e8.
https://doi.org/10.1016/j.cell.2020.02.052
PMid:32142651 PMCid:PMC7102627
Ye Q, Wang B, Zhang T, Xu J, Shang S. The mechanism and treatment of gastrointestinal symptoms in patients with COVID-19. Am J Physiol Gastrointest Liver Physiol. 2020;319(2):G245-52.
https://doi.org/10.1152/ajpgi.00148.2020
PMid:32639848 PMCid:PMC7414235
Akbari H, Tabrizi R, Lankarani KB, Aria H, Vakili S, Asadian F, et al. The role of cytokine profile and lymphocyte subsets in the severity of coronavirus disease 2019 (COVID-19): a systematic review and meta-analysis. Life Sci. 2020;258:118167.
https://doi.org/10.1016/j.lfs.2020.118167
PMid:32735885 PMCid:PMC7387997
Hu B, Huang S, Yin L. The cytokine storm and COVID‐19. J Med Virol. 2021;93(1):250-6.
https://doi.org/10.1002/jmv.26232
PMid:32592501 PMCid:PMC7361342
De Lucena TMC, Da Silva Santos AF, De Lima BR, De Albuquerque Borborema ME, De Azevêdo Silva J. Mechanism of inflammatory response in associated comorbidities in COVID-19. Diabetes Metab Syndr. 2020;14(4):597-600.
https://doi.org/10.1016/j.dsx.2020.05.025
PMid:32417709 PMCid:PMC7215143
Moghaddam Tabrizi F, Rasmi Y, Hosseinzadeh E, Rezaei S, Balvardi M, Kouchari MR, et al. Diabetes is associated with higher mortality and severity in hospitalized patients with COVID-19. Excli J. 2021;20:444-53.
Hoseinyazdi M, Esmaeilian S, Jahankhah R, Teimouri A, Sherbaf FG, Rafiee F, et al. Clinical, laboratory, and chest CT features of severe versus non-severe pediatric patients with COVID-19 infection among different age groups. BMC Infect Dis. 2021;21(1):560.
https://doi.org/10.1186/s12879-021-06283-5
PMid:34118894 PMCid:PMC8196295
Zarei F, Jalli R, Iranpour P, Sefidbakht S, Soltanabadi S, Rezaee M, et al. Differentiation of Chest CT Findings Between Influenza Pneumonia and COVID-19: Interobserver Agreement Between Radiologists. Acad Radiol. 2021;28(10):1331-8.
https://doi.org/10.1016/j.acra.2021.04.010
PMid:34024714 PMCid:PMC8112282
Zhang Y, Geng X, Tan Y, Li Q, Xu C, Xu J, et al. New understanding of the damage of SARS-CoV-2 infection outside the respiratory system. Biomed Pharmacother. 2020;127:110195.
https://doi.org/10.1016/j.biopha.2020.110195
PMid:32361161 PMCid:PMC7186209
Wong SH, Lui RN, Sung JJ. Covid‐19 and the digestive system. J Gastroenterol Hepatol. 2020;35(5):744-8.
https://doi.org/10.1111/jgh.15047
PMid:32215956
Yu W, Ou X, Liu X, Zhang S, Gao X, Cheng H, et al. ACE2 contributes to the maintenance of mouse epithelial barrier function. Biochem Biophys Res Commun. 2020;533(4):1276-82.
https://doi.org/10.1016/j.bbrc.2020.10.002
PMid:33097186 PMCid:PMC7576438
Budden KF, Gellatly SL, Wood DL, Cooper MA, Morrison M, Hugenholtz P, et al. Emerging pathogenic links between microbiota and the gut-lung axis. Nat Rev Microbiol. 2017;15(1):55-63.
https://doi.org/10.1038/nrmicro.2016.142
PMid:27694885
De Oliveira GLV, Oliveira CNS, Pinzan CF, De Salis LVV, Cardoso CRdB. Microbiota modulation of the gut-lung axis in COVID-19. Front Immunol. 2021;12:6354712.
https://doi.org/10.3389/fimmu.2021.635471
PMid:33717181 PMCid:PMC7945592
Hunt RH, East JE, Lanas A, Malfertheiner P, Satsangi J, Scarpignato C, et al. COVID-19 and gastrointestinal disease: implications for the gastroenterologist. Dig Dis. 2021;39(2):119-39.
https://doi.org/10.1159/000512152
PMid:33040064 PMCid:PMC7705947
Zhang D, Li S, Wang N, Tan H-Y, Zhang Z, Feng Y. The cross-talk between gut microbiota and lungs in common lung diseases. Front Microbiol. 2020;11:301.
https://doi.org/10.3389/fmicb.2020.00301
PMid:32158441 PMCid:PMC7052046
Wang J, Li F, Wei H, Lian Z-X, Sun R, Tian Z. Respiratory influenza virus infection induces intestinal immune injury via microbiota-mediated Th17 cell-dependent inflammation. J Exp Med. 2014;211(12):2397-410.
https://doi.org/10.1084/jem.20140625
PMid:25366965 PMCid:PMC4235643
Stenstad H, Ericsson A, Johansson-Lindbom B, Svensson M, Marsal J, Mack M, et al. Gut-associated lymphoid tissue-primed CD4+ T cells display CCR9-dependent and-independent homing to the small intestine. Blood. 2006;107(9):3447-54.
https://doi.org/10.1182/blood-2005-07-2860
PMid:16391017
Papadakis KA, Prehn J, Nelson V, Cheng L, Binder SW, Ponath PD, et al. The role of thymus-expressed chemokine and its receptor CCR9 on lymphocytes in the regional specialization of the mucosal immune system. J Immunol. 2000;165(9):5069-76.
https://doi.org/10.4049/jimmunol.165.9.5069
PMid:11046037
Crowe CR, Chen K, Pociask DA, Alcorn JF, Krivich C, Enelow RI, et al. Critical role of IL-17RA in immunopathology of influenza infection. J Immunol. 2009;183(8):5301-10.
https://doi.org/10.4049/jimmunol.0900995
PMid:19783685 PMCid:PMC3638739
Delgado-Gonzalez P, Gonzalez-Villarreal CA, Roacho-Perez JA, Quiroz-Reyes AG, Islas JF, Delgado-Gallegos JL, et al. Inflammatory effect on the gastrointestinal system associated with COVID-19. World J Gastroenterol. 2021;27(26):4160.
https://doi.org/10.3748/wjg.v27.i26.4160
PMid:34326616 PMCid:PMC8311540
Maconi G, Bosetti C, De Monti A, Boyapati RK, Shelton E, Piazza N, et al. Risk of COVID 19 in patients with inflammatory bowel diseases compared to a control population. Dig Liver Dis. 2021;53(3):263-70.
https://doi.org/10.1016/j.dld.2020.12.013
PMid:33483259 PMCid:PMC7762705
Neurath MF. COVID-19 and immunomodulation in IBD. Gut. 2020;69(7):1335-42.
https://doi.org/10.1136/gutjnl-2020-321269
PMid:32303609 PMCid:PMC7211083
Holmer A, Singh S. Overall and comparative safety of biologic and immunosuppressive therapy in inflammatory bowel diseases. Expert Rev Clin Immunol. 2019;15(9):969-79.
https://doi.org/10.1080/1744666X.2019.1646127
PMid:31322018 PMCid:PMC6813772
Beaugerie L, Rahier J-F, Kirchgesner J. Predicting, preventing, and managing treatment-related complications in patients with inflammatory bowel diseases. Clin Gastroenterol Hepatol. 2020;18(6):1324-35.e2.
https://doi.org/10.1016/j.cgh.2020.02.009
PMid:32059920
Cavezzi A, Troiani E, Corrao S. COVID-19: hemoglobin, iron, and hypoxia beyond inflammation. A narrative review. Clin Pract. 2020;10(2):1271.
https://doi.org/10.4081/cp.2020.1271
PMid:32509258 PMCid:PMC7267810
Singhal R, Shah YM. Oxygen battle in the gut: Hypoxia and hypoxia-inducible factors in metabolic and inflammatory responses in the intestine. J Biol Chem. 2020;295(30):10493-505.
https://doi.org/10.1074/jbc.REV120.011188
PMid:32503843 PMCid:PMC7383395
Paniz‐Mondolfi A, Bryce C, Grimes Z, Gordon RE, Reidy J, Lednicky J, et al. Central nervous system involvement by severe acute respiratory syndrome coronavirus‐2 (SARS‐CoV‐2). J Med Virol. 2020;92(7):699-702.
https://doi.org/10.1002/jmv.25915
PMid:32314810 PMCid:PMC7264598
Trottein F, Sokol H. Potential causes and consequences of gastrointestinal disorders during a SARS-CoV-2 infection. Cell Rep. 2020;32(3):107915.
https://doi.org/10.1016/j.celrep.2020.107915
PMid:32649864 PMCid:PMC7332457
Mao R, Liang J, Shen J, Ghosh S, Zhu L, Yang H, et al. Chinese society of IBD, Chinese elite IBD union; Chinese IBD quality care Evaluation Center Committee. Implications of COVID-19 for patients with pre-existing digestive diseases. Lancet Gastroenterol Hepatol. 2020;5(5):426-8.
https://doi.org/10.1016/S2468-1253(20)30076-5
PMid:32171057
Guan W-j, Ni Z-y, Hu Y, Liang W-h, Ou C-q, He J-x, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708-20.
https://doi.org/10.1056/NEJMoa2002032
PMid:32109013 PMCid:PMC7092819
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The lancet. 2020;395(10223):497-506.
https://doi.org/10.1016/S0140-6736(20)30183-5
PMid:31986264
Zhang Y, Zheng L, Liu L, Zhao M, Xiao J, Zhao Q. Liver impairment in COVID‐19 patients: A retrospective analysis of 115 cases from a single centre in Wuhan city, China. Liver Int. 2020;40(9):2095-103.
https://doi.org/10.1111/liv.14455
PMid:32239796
Cai Q, Huang D, Yu H, Zhu Z, Xia Z, Su Y, et al. COVID-19: Abnormal liver function tests. J Hepatol. 2020;73(3):566-74.
https://doi.org/10.1016/j.jhep.2020.04.042
https://doi.org/10.1016/j.jhep.2020.04.006
PMid:32298767 PMCid:PMC7194951
Kang S, Tanaka T, Narazaki M, Kishimoto T. Targeting interleukin-6 signaling in clinic. Immunity. 2019;50(4):1007-23.
https://doi.org/10.1016/j.immuni.2019.03.026
PMid:30995492
Kishimoto T. Interleukin-6: from basic science to medicine-40 years in immunology. Annu Rev Immunol. 2005;23:1.
https://doi.org/10.1146/annurev.immunol.23.021704.115806
PMid:15771564
Zhan K, Liao S, Li J, Bai Y, Lv L, Yu K, et al. Risk factors in patients with COVID-19 developing severe liver injury during hospitalisation. Gut. 2021;70(3):628-9.
https://doi.org/10.1136/gutjnl-2020-321913
PMid:32571973 PMCid:PMC7873415
Wang Y, Liu S, Liu H, Li W, Lin F, Jiang L, et al. SARS-CoV-2 infection of the liver directly contributes to hepatic impairment in patients with COVID-19. J Hepatol. 2020;73(4):807-16.
https://doi.org/10.1016/j.jhep.2020.05.002
https://doi.org/10.1016/j.jhep.2020.06.028
Wu H-T, Chuang Y-W, Huang C-P, Chang M-H. Loss of angiotensin converting enzyme II (ACE2) accelerates the development of liver injury induced by thioacetamide. Exp Anim. 2018;67(1):41-9.
https://doi.org/10.1538/expanim.17-0053
PMid:28845018 PMCid:PMC5814313
Schett G, Sticherling M, Neurath MF. COVID-19: risk for cytokine targeting in chronic inflammatory diseases? Nat Rev Immunol. 2020;20(5):271-2.
https://doi.org/10.1038/s41577-020-0312-7
PMid:32296135 PMCid:PMC7186927
Glowacka I, Bertram S, Müller MA, Allen P, Soilleux E, Pfefferle S, et al. Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. J Virol. 2011;85(9):4122-34.
https://doi.org/10.1128/JVI.02232-10
PMid:21325420 PMCid:PMC3126222
Puelles VG, Lütgehetmann M, Lindenmeyer MT, Sperhake JP, Wong MN, Allweiss L, et al. Multiorgan and renal tropism of SARS-CoV-2. N Engl J Med. 2020;383(6):590-2.
https://doi.org/10.1056/NEJMc2011400
PMid:32402155 PMCid:PMC7240771
Sonzogni A, Previtali G, Seghezzi M, Grazia Alessio M, Gianatti A, Licini L, et al. Liver histopathology in severe COVID 19 respiratory failure is suggestive of vascular alterations. Liver Int. 2020;40(9):2110-6.
https://doi.org/10.1111/liv.14601
PMid:32654359 PMCid:PMC7404964
Pirola CJ, Sookoian S. COVID-19 and ACE2 in the liver and gastrointestinal tract: putative biological explanations of sexual dimorphism. Gastroenterology. 2020;159(4):1620.
https://doi.org/10.1053/j.gastro.2020.04.050
PMid:32348773 PMCid:PMC7194954
Lien T-C, Sung C-S, Lee C-H, Kao H-K, Huang Y-C, Liu C-Y, et al. Characteristic features and outcomes of severe acute respiratory syndrome found in severe acute respiratory syndrome intensive care unit patients. J Crit Care. 2008;23(4):557-64.
https://doi.org/10.1016/j.jcrc.2007.05.004
PMid:19056023 PMCid:PMC7125607
Jeffers SA, Tusell SM, Gillim-Ross L, Hemmila EM, Achenbach JE, Babcock GJ, et al. CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus. Proc Natl Acad Sci U S A. 2004;101(44):15748-53.
https://doi.org/10.1073/pnas.0403812101
PMid:15496474 PMCid:PMC524836
Wang K, Chen W, Zhang Z, Deng Y, Lian J-Q, Du P, et al. CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells. Signal Transduct Target Ther. 2020;5(1):1-10.
https://doi.org/10.1038/s41392-020-00426-x
PMid:33277466 PMCid:PMC7714896
Fara A, Mitrev Z, Rosalia RA, Assas BM. Cytokine storm and COVID-19: a chronicle of pro-inflammatory cytokines. Open Biol. 2020;10(9):200160.
https://doi.org/10.1098/rsob.200160
PMid:32961074 PMCid:PMC7536084
Merad M, Martin JC. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat Rev Immunol. 2020;20(6):355-62.
https://doi.org/10.1038/s41577-020-0331-4
PMid:32376901 PMCid:PMC7201395
Feng G, Zheng KI, Yan QQ, Rios RS, Targher G, Byrne CD, et al. COVID-19 and liver dysfunction: current insights and emergent therapeutic strategies. J Clin Transl Hepatol. 2020;8(1):18.
https://doi.org/10.14218/JCTH.2020.00018
PMid:32274342 PMCid:PMC7132016
Rasouli J, Ciric B, Imitola J, Gonnella P, Hwang D, Mahajan K, et al. Expression of GM-CSF in T cells is increased in multiple sclerosis and suppressed by IFN-β therapy. J Immunol. 2015;194(11):5085-93.
https://doi.org/10.4049/jimmunol.1403243
PMid:25917097 PMCid:PMC4433790
Crayne CB, Albeituni S, Nichols KE, Cron RQ. The immunology of macrophage activation syndrome. Front Immunol. 2019;10:119.
https://doi.org/10.3389/fimmu.2019.00119
PMid:30774631 PMCid:PMC6367262
Yang L, Han Y, Nilsson-Payant BE, Gupta V, Wang P, Duan X, et al. A human pluripotent stem cell-based platform to study SARS-CoV-2 tropism and model virus infection in human cells and organoids. Cell stem Cell. 2020;27(1):125-36.e7.
https://doi.org/10.1016/j.stem.2020.06.015
PMid:32579880 PMCid:PMC7303620
Banales JM, Huebert RC, Karlsen T, Strazzabosco M, LaRusso NF, Gores GJ. Cholangiocyte pathobiology. Nat Rev Gastroenterol Hepatol. 2019;16(5):269-81.
https://doi.org/10.1038/s41575-019-0125-y
PMid:30850822 PMCid:PMC6563606
Mederacke I, Hsu CC, Troeger JS, Huebener P, Mu X, Dapito DH, et al. Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nat Commun. 2013;4(1):1-11.
https://doi.org/10.1038/ncomms3823
PMid:24264436 PMCid:PMC4059406
Geier A, Fickert P, Trauner M. Mechanisms of disease: mechanisms and clinical implications of cholestasis in sepsis. Nat Clin Pract Gastroenterol Hepatol. 2006;3(10):574-85.
https://doi.org/10.1038/ncpgasthep0602
PMid:17008927
Peralta C, Jiménez-Castro MB, Gracia-Sancho J. Hepatic ischemia and reperfusion injury: effects on the liver sinusoidal milieu. J Hepatol. 2013;59(5):1094-106.
https://doi.org/10.1016/j.jhep.2013.06.017
PMid:23811302
Horvatits T, Trauner M, Fuhrmann V. Hypoxic liver injury and cholestasis in critically ill patients. Curr Opin Crit Care. 2013;19(2):128-32.
https://doi.org/10.1097/MCC.0b013e32835ec9e6
PMid:23403733
Dar WA, Sullivan E, Bynon JS, Eltzschig H, Ju C. Ischaemia reperfusion injury in liver transplantation: Cellular and molecular mechanisms. Liver Int. 2019;39(5):788-801.
https://doi.org/10.1111/liv.14091
PMid:30843314 PMCid:PMC6483869
Horvatits T, Drolz A, Trauner M, Fuhrmann V. Liver injury and failure in critical illness. Hepatology. 2019;70(6):2204-15.
https://doi.org/10.1002/hep.30824
PMid:31215660
Sprent J, Tough DF. T cell death and memory. Science. 2001;293(5528):245-8.
https://doi.org/10.1126/science.1062416
PMid:11452113
Kulkarni AV, Kumar P, Tevethia HV, Premkumar M, Arab JP, Candia R, et al. Systematic review with meta‐analysis: liver manifestations and outcomes in COVID‐19. Aliment Pharmacol Ther. 2020;52(4):584-99.
https://doi.org/10.1111/apt.15916
PMid:32638436 PMCid:PMC7361465
Oyelade T, Alqahtani J, Canciani G. Prognosis of COVID-19 in patients with liver and kidney diseases: an early systematic review and meta-analysis. Trop Med Infect Dis. 2020;5(2):80.
https://doi.org/10.3390/tropicalmed5020080
PMid:32429038 PMCid:PMC7345004
Kundal V, Qureshi S, Mahajan S. Chronic Liver Disease: Etiological Spectrum in Adults. JK Science. 2017;19(3):145-9.
Albillos A, Lario M, Álvarez-Mon M. Cirrhosis-associated immune dysfunction: distinctive features and clinical relevance. J Hepatol. 2014;61(6):1385-96.
https://doi.org/10.1016/j.jhep.2014.08.010
PMid:25135860
Cichoż-Lach H, Michalak A. Liver injury in the era of COVID-19. World J Gastroenterol. 2021;27(5):377.
https://doi.org/10.3748/wjg.v27.i5.377
PMid:33584070 PMCid:PMC7856845
Yoon E, Babar A, Choudhary M, Kutner M, Pyrsopoulos N. Acetaminophen-induced hepatotoxicity: a comprehensive update. J Clin Transl Hepatol. 2016;4(2):131.
https://doi.org/10.14218/JCTH.2015.00052
Akinci E, Cha M, Lin L, Yeo G, Hamilton MC, Donahue CJ, et al. Elucidation of remdesivir cytotoxicity pathways through genome-wide CRISPR-Cas9 screening and transcriptomics. BioRxiv. 2020.
https://doi.org/10.1101/2020.08.27.270819
Chiou H-E, Liu C-L, Buttrey MJ, Kuo H-P, Liu H-W, Kuo H-T, et al. Adverse effects of ribavirin and outcome in severe acute respiratory syndrome: experience in two medical centers. Chest. 2005;128(1):263-72.
https://doi.org/10.1378/chest.128.1.263
PMid:16002945 PMCid:PMC7094379
Breining P, Frølund AL, Højen JF, Gunst JD, Staerke NB, Saedder E, et al. Camostat mesylate against SARS‐CoV‐2 and COVID‐19-Rationale, dosing and safety. Basic Clin Pharmacol Toxicol. 2021;128(2):204-12.
https://doi.org/10.1111/bcpt.13533
PMid:33176395
Montefusco L, Ben Nasr M, D'Addio F, Loretelli C, Rossi A, Pastore I, et al. Acute and long-term disruption of glycometabolic control after SARS-CoV-2 infection. Nat Metab. 2021;3(6):774-85.
https://doi.org/10.1038/s42255-021-00407-6
PMid:34035524
Qadir MMF, Bhondeley M, Beatty W, Gaupp DD, Doyle-Meyers LA, Fischer T, et al. SARS-CoV-2 infection of the pancreas promotes thrombofibrosis and is associated with new-onset diabetes. JCI insight. 2021;6(16):e151551.
https://doi.org/10.1172/jci.insight.151551
PMid:34241597 PMCid:PMC8410013
Geravandi S, Mahmoudi-Aznaveh A, Azizi Z, Maedler K, Ardestani A. SARS-CoV-2 and pancreas: a potential pathological interaction? Trends Endocrinol Metab. 2021;32(11):842-5.
https://doi.org/10.1016/j.tem.2021.07.004
PMid:34373155 PMCid:PMC8302839
Liu F, Long X, Zhang B, Zhang W, Chen X, Zhang Z. ACE2 expression in pancreas may cause pancreatic damage after SARS-CoV-2 infection. Clin Gastroenterol Hepatol. 2020;18(9):2128-30.e2.
https://doi.org/10.1016/j.cgh.2020.04.040
PMid:32334082 PMCid:PMC7194639
Masamune A, Watanabe T, Kikuta K, Shimosegawa T. Roles of pancreatic stellate cells in pancreatic inflammation and fibrosis. Clin Gastroenterol Hepatol. 2009;7(11):S48-54.
https://doi.org/10.1016/j.cgh.2009.07.038
PMid:19896099
Coperchini F, Chiovato L, Croce L, Magri F, Rotondi M. The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system. Cytokine Growth Factor Rev. 2020;53:25-32.
https://doi.org/10.1016/j.cytogfr.2020.05.003
PMid:32446778 PMCid:PMC7211650
Muniraj T, Dang S, Pitchumoni CS. PANCREATITIS OR NOT?-Elevated lipase and amylase in ICU patients. J Crit Care. 2015;30(6):1370-5.
https://doi.org/10.1016/j.jcrc.2015.08.020
PMid:26411523

Copyright (c) 2022 Galen Medical Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).